Existentially closed II1 factors

被引:20
作者
Farah, Ilijas [1 ]
Goldbring, Isaac [2 ]
Hart, Bradd [3 ]
Sherman, David [4 ]
机构
[1] York Univ, Dept Math & Stat, 4700 Keele St, York, ON M3J 1P3, Canada
[2] Univ Illinois, Dept Math Stat & Comp Sci, Sci & Engn Off M-C 249,851 S Morgan St, Chicago, IL 60607 USA
[3] McMaster Univ, Dept Math & Stat, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
[4] Univ Virginia, Dept Math, POB 400137, Charlottesville, VA 22904 USA
基金
加拿大自然科学与工程研究理事会;
关键词
existentially closed; II1; factor; continuous model theory; MODEL-THEORY; ALGEBRAS;
D O I
10.4064/fm126-12-2015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the properties of existentially closed (R-omega-embeddable) factors. In particular, we use the fact that every automorphism of an existentially closed (R-omega-embeddable) II1 factor is approximately inner to prove that Th(R) is not model complete. We also show that Th('R) is complete for both finite and infinite forcing and use the latter result to prove that there exist continuum many nonisomorphic existentially closed models of Th(R).
引用
收藏
页码:173 / 196
页数:24
相关论文
共 19 条
[1]   Amenable correspondences and approximation properties for von Neumann algebras [J].
AnantharamanDelaroche, C .
PACIFIC JOURNAL OF MATHEMATICS, 1995, 171 (02) :309-341
[2]  
BEHNCKE H, 1972, TOHOKU MATH J, V24, P401
[3]   Free entropy dimension in amalgamated free products [J].
Brown, Nathanial P. ;
Dykema, Kenneth J. ;
Jung, Kenley .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 97 :339-367
[4]   Topological dynamical systems associated to II1-factors [J].
Brown, Nathanial P. .
ADVANCES IN MATHEMATICS, 2011, 227 (04) :1665-1699
[5]  
Connes A., 1974, J FUNCT ANAL, V16, P415
[6]  
Farah I., 2014, LECT NOTES SERIES, P1, DOI DOI 10.1142/9789814571043_0001
[7]   MODEL THEORY OF OPERATOR ALGEBRAS II: MODEL THEORY [J].
Farah, Ilijas ;
Hart, Bradd ;
Sherman, David .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (01) :477-505
[8]   Model theory of operator algebras III: elementary equivalence and II1 factors [J].
Farah, Ilijas ;
Hart, Bradd ;
Sherman, David .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 :609-628
[9]   Model theory of operator algebras I: stability [J].
Farah, Ilijas ;
Hart, Bradd ;
Sherman, David .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 :825-838
[10]   THE THEORY OF TRACIAL VON NEUMANN ALGEBRAS DOES NOT HAVE A MODEL COMPANION [J].
Goldbring, Isaac ;
Hart, Bradd ;
Sinclair, Thomas .
JOURNAL OF SYMBOLIC LOGIC, 2013, 78 (03) :1000-1004