Efficient Kalman smoothing for harmonic state-space models

被引:0
|
作者
Barber, David [1 ]
机构
[1] IDIAP Res Inst, CH-1920 Martigny, Switzerland
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Harmonic probabilistic models are common in signal analysis. Framed as a linear-Gaussian state-space model, smoothed inference scales as O(TH2) where H is twice the number of frequencies in the model and T is the length of the time-series. Due to their central role in acoustic modelling, fast effective inference in this model is of some considerable interest. We present a form of `rotation-corrected' low-rank approximation for the backward pass of the Rauch-Tung-Striebel smoother. This provides an effective approximation with computation complexity O(TSH) where S is the rank of the approximation.
引用
收藏
页码:2979 / 2982
页数:4
相关论文
共 50 条
  • [41] BOOTSTRAPPING STATE-SPACE MODELS - GAUSSIAN MAXIMUM-LIKELIHOOD-ESTIMATION AND THE KALMAN FILTER
    STOFFER, DS
    WALL, KD
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) : 1024 - 1033
  • [42] Kalman-based nested hybrid filters for recursive inference in state-space models
    Perez-Vieites, Sara
    Miguez, Joaquin
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2468 - 2472
  • [43] Robust Linearly Constrained Kalman Filter for General Mismatched Linear State-Space Models
    Vila-Valls, Jordi
    Chaumette, Eric
    Vincent, Francois
    Closas, Pau
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (12) : 6794 - 6801
  • [44] KALMAN FILTER FOR SINGULAR AND CONDITIONAL STATE-SPACE MODELS WHEN THE SYSTEM STATE AND THE OBSERVATIONAL ERROR ARE CORRELATED
    NIETO, FH
    GUERRERO, VM
    STATISTICS & PROBABILITY LETTERS, 1995, 22 (04) : 303 - 310
  • [45] The Gibbs sampler with particle efficient importance sampling for state-space models*
    Grothe, Oliver
    Kleppe, Tore Selland
    Liesenfeld, Roman
    ECONOMETRIC REVIEWS, 2019, 38 (10) : 1152 - 1175
  • [46] Unscented Kalman Filters for Riemannian State-Space Systems
    Menegaz, Henrique M. T.
    Ishihara, Joao Y.
    Kussaba, Hugo T. M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (04) : 1487 - 1502
  • [47] State-Space Model and Kalman Filter Gain Identification by a Kalman Filter of a Kalman Filter
    Phan, Minh Q.
    Vicario, Francesco
    Longman, Richard W.
    Betti, Raimondo
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2018, 140 (03):
  • [48] Harmonic State-Space Model of a Controlled TCR
    Orillaza, Jordan Rel C.
    Wood, Alan R.
    IEEE TRANSACTIONS ON POWER DELIVERY, 2013, 28 (01) : 197 - 205
  • [49] Kalman filter and state-space approach to blind deconvolution
    Zhang, LQ
    Cichocki, A
    Amari, S
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 425 - 434
  • [50] Computationally efficient predictive control based on ANN state-space models
    Hoekstra, Jan H.
    Cseppento, Bence
    Beintema, Gerben, I
    Schoukens, Maarten
    Kollar, Zsolt
    Toth, Roland
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 6336 - 6341