A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theorem for the orthogonal rank tensor decomposition

被引:52
作者
Kolda, TG [1 ]
机构
[1] Sandia Natl Labs, Comp Sci & Math Res Dept, Livermore, CA 94551 USA
关键词
singular value decomposition; principal components analysis; multidimensional arrays; higher-order tensor; multilinear algebra;
D O I
10.1137/S0895479801394465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Earlier work has shown that no extension of the Eckart-Young SVD approximation theorem can be made to the strong orthogonal rank tensor decomposition. Here, we present a counterexample to the extension of the Eckart-Young SVD approximation theorem to the orthogonal rank tensor decomposition, answering an open question previously posed by Kolda [SIAM J. Matrix Anal. Appl., 23 (2001), pp. 243-355].
引用
收藏
页码:762 / 767
页数:6
相关论文
共 5 条
[1]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[2]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[3]   THE APPROXIMATION OF ONE MATRIX BY ANOTHER OF LOWER RANK [J].
Eckart, Carl ;
Young, Gale .
PSYCHOMETRIKA, 1936, 1 (03) :211-218
[4]   Orthogonal tensor decompositions [J].
Kolda, TG .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :243-255
[5]   A singular value decomposition of a k-way array for a principal component analysis of multiway data, PTA-k [J].
Leibovici, D ;
Sabatier, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 269 :307-329