IMPRESSION - prediction of NMR parameters for 3-dimensional chemical structures using machine learning with near quantum chemical accuracy

被引:74
|
作者
Gerrard, Will [1 ]
Bratholm, Lars A. [1 ]
Packer, Martin [2 ]
Mulholland, Adrian J. [1 ]
Glowacki, David R. [1 ]
Butts, Craig P. [1 ]
机构
[1] Univ Bristol, Bristol, Avon, England
[2] AstraZeneca, R&D Oncol, Chem, Cambridge CB4 0QA, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
2ND ROW ATOMS; COUPLING-CONSTANTS; NEURAL-NETWORKS; BASIS-SET; SHIFTS; TOOL; H-1; FUNCTIONALS; MOLECULES;
D O I
10.1039/c9sc03854j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The IMPRESSION (Intelligent Machine PREdiction of Shift and Scalar information Of Nuclei) machine learning system provides an efficient and accurate method for the prediction of NMR parameters from 3-dimensional molecular structures. Here we demonstrate that machine learning predictions of NMR parameters, trained on quantum chemical computed values, can be as accurate as, but computationally much more efficient (tens of milliseconds per molecular structure) than, quantum chemical calculations (hours/days per molecular structure) starting from the same 3-dimensional structure. Training the machine learning system on quantum chemical predictions, rather than experimental data, circumvents the need for the existence of large, structurally diverse, error-free experimental databases and makes IMPRESSION applicable to solving 3-dimensional problems such as molecular conformation and stereoisomerism.
引用
收藏
页码:508 / 515
页数:8
相关论文
共 50 条
  • [1] Quantum chemical computation and machine learning in NMR
    Sarotti, Ariel M.
    MAGNETIC RESONANCE IN CHEMISTRY, 2020, 58 (06) : 477 - 477
  • [2] 3-DIMENSIONAL STRUCTURES AND CHEMICAL MECHANISMS OF ENZYMES
    LIPSCOMB, WN
    CHEMICAL SOCIETY REVIEWS, 1972, 1 (03) : 319 - +
  • [3] Using Machine Learning for Quantum Annealing Accuracy Prediction
    Barbosa, Aaron
    Pelofske, Elijah
    Hahn, Georg
    Djidjev, Hristo N.
    ALGORITHMS, 2021, 14 (06)
  • [4] DETECTION OF 3-DIMENSIONAL PATTERNS OF ATOMS IN CHEMICAL STRUCTURES
    LESK, AM
    COMMUNICATIONS OF THE ACM, 1979, 22 (04) : 219 - 224
  • [5] CHEMICAL-SHIFTS AND 3-DIMENSIONAL PROTEIN STRUCTURES
    OLDFIELD, E
    JOURNAL OF BIOMOLECULAR NMR, 1995, 5 (03) : 217 - 225
  • [6] A 3-DIMENSIONAL, QUANTUM MODEL FOR CHEMICAL-REACTION
    ELSUM, IR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 180 (AUG): : 159 - PHYS
  • [7] SEARCHING TECHNIQUES FOR DATABASES OF 3-DIMENSIONAL CHEMICAL STRUCTURES
    BURES, MG
    MARTIN, YC
    WILLETT, P
    TOPICS IN STEREOCHEMISTRY, VOL 21, 1994, 21 : 467 - 511
  • [8] Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations
    Dral, Pavlo O.
    von Lilienfeld, O. Anatole
    Thiel, Walter
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (05) : 2120 - 2125
  • [9] Quantum Chemical Reaction Prediction Method Based on Machine Learning
    Fujinami, Mikito
    Seino, Junji
    Nakai, Hiromi
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2020, 93 (05) : 685 - 693
  • [10] In silico prediction of chemical neurotoxicity using machine learning
    Jiang, Changsheng
    Zhao, Piaopiao
    Li, Weihua
    Tang, Yun
    Liu, Guixia
    TOXICOLOGY RESEARCH, 2020, 9 (03) : 164 - 172