Image Copy Detection Based on Convolutional Neural Networks

被引:3
|
作者
Zhang, Jing [1 ]
Zhu, Wenting [2 ]
Li, Bing [2 ]
Hu, Weiming [2 ]
Yang, Jinfeng [1 ]
机构
[1] Civil Aviat Univ China, Coll Elect Informat & Automat, Tianjin 300300, Peoples R China
[2] Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
来源
关键词
Image copy detection; Feature extraction; CNN;
D O I
10.1007/978-981-10-3005-5_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a model that automatically differentiates copied versions of original images. Unlike traditional image copy detection schemes, our system is a Convolutional Neural Networks (CNN) based model which means that it does not need any manually-designed features. In addition, a convolutional network is more applicable to image copy detection whose architecture is designed for robustness to geometric distortions. Our model uses fully connected layers to compute a similarity between CNN features, which are extracted from image pairs by a deep convolutional network. This method is very efficient and scalable to large databases. In order to see the comparison visually, a variety of models are explored. Experimental results demonstrate that our model presents surprising performance on various data sets.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 50 条
  • [41] Image Forgery Detection Based on the Convolutional Neural Network
    Feng Guorui
    Wu Jian
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 266 - 270
  • [42] Image Resampling Detection Based on Convolutional Neural Network
    Liang, Yaohua
    Fang, Yanmei
    Luo, Shangjun
    Chen, Bing
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 257 - 261
  • [43] Image Deblocking Detection Based on a Convolutional Neural Network
    Liu, Xianjin
    Lu, Wei
    Liu, Wanteng
    Luo, Shangjun
    Liang, Yaohua
    Li, Ming
    IEEE ACCESS, 2019, 7 : 24632 - 24639
  • [44] Traffic Sign Detection based on Convolutional Neural Networks
    Wu, Yihui
    Liu, Yulong
    Li, Jianmin
    Liu, Huaping
    Hu, Xiaolin
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [45] Detection of pulmonary tuberculosis based on convolutional neural networks
    Sriporn, Krit
    Tsai, Cheng-Fa
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 27 - 27
  • [46] Singing Voice Detection Based on Convolutional Neural Networks
    Huang, Hong-Ming
    Chen, Woei-Kae
    Liu, Chien-Hung
    You, Shingchern D.
    2018 7TH IEEE INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION ELECTRONICS (ISNE), 2018, : 223 - 226
  • [47] Android Malware Detection Based on Convolutional Neural Networks
    Wang, Zhiqiang
    Li, Gefei
    Chi, Yaping
    Zhang, Jianyi
    Yang, Tao
    Liu, Qixu
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [48] Facemask Detection Based on Double Convolutional Neural Networks
    Chen G.
    Bai B.
    Zhou H.
    Liu M.
    Yi H.
    Recent Patents on Engineering, 2022, 16 (03)
  • [49] Content Recapture Detection Based on Convolutional Neural Networks
    Choi, Hak-Yeol
    Jang, Han-Ul
    Son, Jeongho
    Kim, Dongkyu
    Lee, Heung-Kyu
    INFORMATION SCIENCE AND APPLICATIONS 2017, ICISA 2017, 2017, 424 : 339 - 346
  • [50] Smoke Detection Based on Deep Convolutional Neural Networks
    Tao, Chongyuan
    Zhang, Jian
    Wang, Pan
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 150 - 153