A Variational View on Statistical Multiscale Estimation

被引:2
作者
Haltmeier, Markus [1 ]
Li, Housen [2 ,3 ]
Munk, Axel [2 ,3 ]
机构
[1] Univ Innsbruck, Dept Math, A-6020 Innsbruck, Austria
[2] Univ Gottingen, Dept Math & Comp Sci, D-37077 Gottingen, Germany
[3] Univ Gottingen, Cluster Excellence Multiscale Bioimaging Mol Mach, D-37077 Gottingen, Germany
关键词
Fenchel duality; Lagrangian formulation; nonparametric regression; statistical imaging; change points; wavelets; high-dimensional linear models; variational estimation; LINEAR INVERSE PROBLEMS; NONPARAMETRIC REGRESSION; EXPONENTIAL-FAMILIES; SPATIAL ADAPTATION; MODEL-SELECTION; ADAPTIVE LASSO; NOISE REMOVAL; WAVELET; MINIMIZATION; SHRINKAGE;
D O I
10.1146/annurev-statistics-040120-030531
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a unifying view on various statistical estimation techniques including penalization, variational, and thresholding methods. These estimators are analyzed in the context of statistical linear inverse problems including nonparametric and change point regression, and high-dimensional linear models as examples. Our approach reveals many seemingly unrelated estimation schemes as special instances of a general class of variational multiscale estimators, called MIND (multiscale Nemirovskii-Dantzig). These estimators result from minimizing certain regularization functionals under convex constraints that can be seen as multiple statistical tests for local hypotheses. For computational purposes, we recast MIND in terms of simpler unconstraint optimization problems via Lagrangian penalization as well as Fenchel duality. Performance of several MINDs is demonstrated on numerical examples.
引用
收藏
页码:343 / 372
页数:30
相关论文
共 127 条
  • [11] SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR
    Bickel, Peter J.
    Ritov, Ya'acov
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2009, 37 (04) : 1705 - 1732
  • [12] CONSISTENCIES AND RATES OF CONVERGENCE OF JUMP-PENALIZED LEAST SQUARES ESTIMATORS
    Boysen, Leif
    Kempe, Angela
    Liebscher, Volkmar
    Munk, Axel
    Wittich, Olaf
    [J]. ANNALS OF STATISTICS, 2009, 37 (01) : 157 - 183
  • [14] BETTER SUBSET REGRESSION USING THE NONNEGATIVE GARROTE
    BREIMAN, L
    [J]. TECHNOMETRICS, 1995, 37 (04) : 373 - 384
  • [15] Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
  • [16] A DATA-DRIVEN BLOCK THRESHOLDING APPROACH TO WAVELET ESTIMATION
    Cai, T. Tony
    Zhou, Harrison H.
    [J]. ANNALS OF STATISTICS, 2009, 37 (02) : 569 - 595
  • [17] Adaptive wavelet estimation: A block thresholding and oracle inequality approach
    Cai, TT
    [J]. ANNALS OF STATISTICS, 1999, 27 (03) : 898 - 924
  • [18] Candes A., 2000, CURVES SURFACES, P105, DOI DOI 10.1016/J.BIOPSYCHO.2009.12.002
  • [19] Ridgelets:: a key to higher-dimensional intermittency?
    Candès, EJ
    Donoho, DL
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1760): : 2495 - 2509
  • [20] Candès EJ, 2002, ANN STAT, V30, P784