Mammary epithelial cells have lineage-rooted metabolic identities

被引:33
作者
Mahendralingam, Mathepan Jeya [1 ,2 ]
Kim, Hyeyeon [1 ,2 ]
McCloskey, Curtis William [1 ,2 ]
Aliar, Kazeera [1 ]
Casey, Alison Elisabeth [1 ]
Tharmapalan, Pirashaanthy [1 ,2 ]
Pellacani, Davide [3 ]
Ignatchenko, Vladimir [1 ]
Garcia-Valero, Mar [4 ]
Palomero, Luis [4 ]
Sinha, Ankit [1 ,2 ]
Cruickshank, Jennifer [1 ]
Shetty, Ronak [1 ]
Vellanki, Ravi N. [1 ]
Koritzinsky, Marianne [1 ,2 ,5 ,6 ]
Stambolic, Vid [1 ]
Alam, Mina [1 ]
Schimmer, Aaron David [1 ,2 ]
Berman, Hal Kenneth [1 ,7 ]
Eaves, Connie J. [3 ]
Pujana, Miquel Angel [4 ]
Kislinger, Thomas [1 ,2 ]
Khokha, Rama [1 ,2 ,7 ]
机构
[1] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[2] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[3] Terry Fox Lab, BC Canc, Vancouver, BC, Canada
[4] Bellvitge Inst Biomed Res IDIBELL, Catalan Inst Oncol, ProCURE, Oncobell, Barcelona, Spain
[5] Univ Toronto, Inst Med Sci, Toronto, ON, Canada
[6] Univ Toronto, Dept Radiat Oncol, Toronto, ON, Canada
[7] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada
关键词
SET ENRICHMENT ANALYSIS; STEM-CELLS; REVEALS; PROGENITORS; HIERARCHY; TISSUE; CHAIN; HETEROGENEITY; SPECIFICATION; BIOSYNTHESIS;
D O I
10.1038/s42255-021-00388-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cancer metabolism adapts the metabolic network of its tissue of origin. However, breast cancer is not a disease of a single origin. Multiple epithelial populations serve as the culprit cell of origin for specific breast cancer subtypes, yet our knowledge of the metabolic network of normal mammary epithelial cells is limited. Using a multi-omic approach, here we identify the diverse metabolic programmes operating in normal mammary populations. The proteomes of basal, luminal progenitor and mature luminal cell populations revealed enrichment of glycolysis in basal cells and of oxidative phosphorylation in luminal progenitors. Single-cell transcriptomes corroborated lineage-specific metabolic identities and additional intra-lineage heterogeneity. Mitochondrial form and function differed across lineages, with clonogenicity correlating with mitochondrial activity. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed lineage-rooted metabolic vulnerabilities of mammary progenitors. Bioinformatics indicated breast cancer subtypes retain metabolic features of their putative cell of origin. Thus, lineage-rooted metabolic identities of normal mammary cells may underlie breast cancer metabolic heterogeneity and targeting these vulnerabilities could advance breast cancer therapy. Cancer metabolism adapts the metabolic network of its cell of origin. Mahendralingam et al. find that lineage-rooted metabolic identities of normal mammary cells reflect breast cancer subtype metabolism.
引用
收藏
页码:665 / +
页数:31
相关论文
共 95 条
[1]   Nebulosa recovers single-cell gene expression signals by kernel density estimation [J].
Alquicira-Hernandez, Jose ;
Powell, Joseph E. .
BIOINFORMATICS, 2021, 37 (16) :2485-2487
[2]   An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis [J].
Birsoy, Kivanc ;
Wang, Tim ;
Chen, Walter W. ;
Freinkman, Elizaveta ;
Abu-Remaileh, Monther ;
Sabatini, David M. .
CELL, 2015, 162 (03) :540-551
[3]   Impact of Tumor Microenvironment and Epithelial Phenotypes on Metabolism in Breast Cancer [J].
Brauer, Heather Ann ;
Makowski, Liza ;
Hoadley, Katherine A. ;
Casbas-Hernandez, Patricia ;
Lang, Lindsay J. ;
Roman-Perez, Erick ;
D'Arcy, Monica ;
Freemerman, Alex J. ;
Perou, Charles M. ;
Troester, Melissa A. .
CLINICAL CANCER RESEARCH, 2013, 19 (03) :571-585
[4]   Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism [J].
Budczies, Jan ;
Brockmoeller, Scarlet F. ;
Mueller, Berit M. ;
Barupal, Dinesh K. ;
Richter-Ehrenstein, Christiane ;
Kleine-Tebbe, Anke ;
Griffin, Julian L. ;
Oresic, Matej ;
Dietel, Manfred ;
Denkert, Carsten ;
Fiehn, Oliver .
JOURNAL OF PROTEOMICS, 2013, 94 :279-288
[5]  
Bunn A., 2021, INTRO DPLR
[6]   MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins [J].
Calvo, Sarah E. ;
Clauser, Karl R. ;
Mootha, Vamsi K. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D1251-D1257
[7]   SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data [J].
Cao, Yinghao ;
Wang, Xiaoyue ;
Peng, Gongxin .
FRONTIERS IN GENETICS, 2020, 11
[8]   Metabolic Footprints and Molecular Subtypes in Breast Cancer [J].
Cappelletti, Vera ;
Iorio, Egidio ;
Miodini, Patrizia ;
Silvestri, Marco ;
Dugo, Matteo ;
Daidone, Maria Grazia .
DISEASE MARKERS, 2017, 2017
[9]   Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities [J].
Casey, Alison E. ;
Sinha, Ankit ;
Singhania, Rajat ;
Livingstone, Julie ;
Waterhouse, Paul ;
Tharmapalan, Pirashaanthy ;
Cruickshank, Jennifer ;
Shehata, Mona ;
Drysdale, Erik ;
Fang, Hui ;
Kim, Hyeyeon ;
Isserlin, Ruth ;
Bailey, Swneke ;
Medina, Tiago ;
Deblois, Genevieve ;
Shiah, Yu-Jia ;
Barsyte-Lovejoy, Dalia ;
Hofer, Stefan ;
Bader, Gary ;
Lupien, Mathieu ;
Arrowsmith, Cheryl ;
Knapp, Stefan ;
De Carvalho, Daniel ;
Berman, Hal ;
Boutros, Paul C. ;
Kislinger, Thomas ;
Khokha, Rama .
JOURNAL OF CELL BIOLOGY, 2018, 217 (08) :2951-2974
[10]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404