Reach target selection in humans using ambiguous decision cues containing variable amounts of conflicting sensory evidence supporting each target choice
Human subjects chose between two color-coded reach targets using multicolored checkerboard-like decision cues (DCs) that presented variable amounts of conflicting sensory evidence supporting both target choices. Different DCs contained different numbers of small squares of the two target colors. The most ambiguous DCs contained nearly equal numbers of squares of both target colors. The subjects reached as soon as they selected a target after the appearance of the DC ("choose-and-go" task). The choice behavior of the subjects showed many similarities to prior studies using other stimulus properties (e.g., visual motion coherence, brightness), including progressively longer response times and higher target-choice error rates for more ambiguous DCs. However, certain trends in their choice behavior could not be fully captured by simple drift-diffusion models. Allowing the subjects to view the DCs for a period of time before presenting the targets ("match-to-sample" task) resulted in much shorter response times overall, but also revealed a reluctance of subjects to commit to a decision about the predominant color of the more ambiguous DCs during the initial extended observation period. Model processing and simulation analyses suggest that the subjects might adjust the dynamics of their decision-making process on a trial-to-trial basis in response to the variable level of ambiguous and conflicting evidence in different DCs between trials.