Learning Accurate Objectness Instance Segmentation from Photorealistic Rendering for Robotic Manipulation

被引:2
作者
Li, Siyi [1 ]
Zhou, Jiaji [2 ]
Jia, Zhenzhong [2 ]
Yeung, Dit-Yan [1 ]
Mason, Matthew T. [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Clear Water Bay, Hong Kong, Peoples R China
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS | 2020年 / 11卷
关键词
Instance segmentation; Robotic manipulation; Synthetic data;
D O I
10.1007/978-3-030-33950-0_22
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Recent progress in computer vision has been driven by high-capacity deep convolutional neural network (CNN) models trained on generic large datasets. However, creating large datasets with dense pixel-level labels is extremely costly. In this paper, we focus on the problem of instance segmentation for robotic manipulation using rich image and depth features. To avoid intensive human labeling, we develop an automated rendering pipeline for rapidly generating labeled datasets. Given 3D object models as input, the rendering pipeline produces photorealistic images with pixel-accurate semantic label maps and depth maps. The synthetic dataset is then used to train an RGB-D segmentation model by extending the Mask R-CNN framework for depth input fusion. Our results open up new possibilities for advancing robotic perception using cheap and large-scale synthetic data.
引用
收藏
页码:245 / 255
页数:11
相关论文
共 20 条
  • [1] [Anonymous], P NEURAL INFORM PROC
  • [2] [Anonymous], 2013, IEEE Comput. Soc., DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81]
  • [3] [Anonymous], 2017, P IEEE INT C COMPUTE
  • [4] Calli B, 2015, PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), P510, DOI 10.1109/ICAR.2015.7251504
  • [5] He K., 2016, PROC IEEE COMPUT SOC, P1026, DOI [10.1109/cvpr.2016.90., DOI 10.1109/CVPR.2016.90]
  • [6] Li SY, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4936
  • [7] Microsoft COCO: Common Objects in Context
    Lin, Tsung-Yi
    Maire, Michael
    Belongie, Serge
    Hays, James
    Perona, Pietro
    Ramanan, Deva
    Dollar, Piotr
    Zitnick, C. Lawrence
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 740 - 755
  • [8] Feature Pyramid Networks for Object Detection
    Lin, Tsung-Yi
    Dollar, Piotr
    Girshick, Ross
    He, Kaiming
    Hariharan, Bharath
    Belongie, Serge
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 936 - 944
  • [9] Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
  • [10] Mitash C, 2017, IEEE INT C INT ROBOT, P545, DOI 10.1109/IROS.2017.8202206