L2 error estimate of the finite volume element methods on quadrilateral meshes

被引:65
作者
Lv, Junliang [1 ]
Li, Yonghai [2 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
Finite volume element methods; L-2 error estimate; Quadrilateral meshes; Isoparametric bilinear element; Dual partition; Quasi-parallel quadrilateral; ELLIPTIC PROBLEMS; BOX SCHEMES; CONVERGENCE; NETWORKS;
D O I
10.1007/s10444-009-9121-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the optimal L-2 error estimates of the finite volume element methods (FVEM) for Poisson equation are discussed on quadrilateral meshes. The trial function space is taken as isoparametric bilinear finite element space on quadrilateral partition, and the test function space is defined as piecewise constant space on dual partition. Under the assumption that all elements on quadrilateral meshes are O(h(2)) quasi-parallel quadrilateral elements, we prove convergence rate to be O(h(2)) in L-2 norm.
引用
收藏
页码:129 / 148
页数:20
相关论文
共 27 条
[1]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[2]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[3]   A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions [J].
Chatzipantelidis, P .
NUMERISCHE MATHEMATIK, 1999, 82 (03) :409-432
[4]  
CHEN Z, 1994, NUMER MATH J CHINESE, V3, P163
[5]  
Chen Z. Y., 1992, NE MATH J, V8, P127
[6]   High order finite volume methods for singular perturbation problems [J].
Chen ZhongYing ;
He ChongNan ;
Wu Bin .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08) :1391-1400
[7]   A note on the optimal L2-estimate of the finite volume element method [J].
Chen, ZY ;
Li, RH ;
Zhou, AH .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 16 (04) :291-303
[8]  
CHEN ZY, 1994, ACTA SCIENTIARUM NAT, V33, P22
[9]  
Chou SH, 2000, MATH COMPUT, V69, P103, DOI 10.1090/S0025-5718-99-01192-8
[10]  
CIARLET P. G., 2002, Classics in Appl. Math., V40