From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown

被引:189
作者
Kim, Chiho [1 ,2 ]
Pilania, Ghanshyam [3 ]
Ramprasad, Ramamurthy [1 ,2 ]
机构
[1] Univ Connecticut, Dept Mat Sci & Engn, 97 North Eagleville Rd, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, 97 North Eagleville Rd, Storrs, CT 06269 USA
[3] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
关键词
AUGMENTED-WAVE METHOD; CRYSTAL-STRUCTURE; ELECTRON-GAS; ENERGY; SEMICONDUCTORS; ACCURATE;
D O I
10.1021/acs.chemmater.5b04109
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the behavior (and failure) of F.. dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. Here, we focus on the intrinsic dielectric breakdown field of insulators the theoretical limit of. breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark data set (generated from laborious first-principles computations) of the intrinsic dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. The models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials.
引用
收藏
页码:1304 / 1311
页数:8
相关论文
共 45 条
[11]   Predicting crystal structure by merging data mining with quantum mechanics [J].
Fischer, Christopher C. ;
Tibbetts, Kevin J. ;
Morgan, Dane ;
Ceder, Gerbrand .
NATURE MATERIALS, 2006, 5 (08) :641-646
[12]   ON THE THEORY OF DIELECTRIC BREAKDOWN IN SOLIDS [J].
FROHLICH, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1947, 188 (1015) :521-532
[13]   Theory of electrical breakdown in ionic crystals [J].
Frohlich, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1937, 160 (A901) :0230-0241
[14]   Theory of dielectric breakdown [J].
Frohlich, H .
NATURE, 1943, 151 :339-340
[15]   Probabilistic machine learning and artificial intelligence [J].
Ghahramani, Zoubin .
NATURE, 2015, 521 (7553) :452-459
[16]   Big Data of Materials Science: Critical Role of the Descriptor [J].
Ghiringhelli, Luca M. ;
Vybiral, Jan ;
Levchenko, Sergey V. ;
Draxl, Claudia ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)
[17]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[18]  
Hall E.O., 1970, YIELD POINT PHENOMEN, DOI DOI 10.1007/978-1-4684-1860-6
[19]  
Hastie T., 2009, ELEMENTS STAT LEARNI, V2, DOI [10.1007/978-0-387-84858-7, DOI 10.1007/978-0-387-84858-7]
[20]   Kernel methods in machine learning [J].
Hofmann, Thomas ;
Schoelkopf, Bernhard ;
Smola, Alexander J. .
ANNALS OF STATISTICS, 2008, 36 (03) :1171-1220