SHOPIN: Semantic Homogeneity Optimization in Protein Interaction Networks

被引:2
作者
Trivodaliev, Kire [1 ]
Kalajdziski, Slobodan [1 ]
Ivanoska, Ilinka [1 ]
Stojkoska, Biljana Risteska [1 ]
Kocarev, Ljupco [1 ,2 ,3 ]
机构
[1] Univ Ss Cyril & Methodius, Fac Comp Sci & Engn, Skopje, North Macedonia
[2] Macedonian Acad Sci & Arts, Skopje, North Macedonia
[3] Univ Calif San Diego, BioCircuits Inst, San Diego, CA 92103 USA
来源
ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY, VOL 101 | 2015年 / 101卷
关键词
GENE ONTOLOGY; MODULAR ORGANIZATION; MOLECULAR-COMPLEXES; RANDOM-WALKS; PREDICTION; DATABASE; CLASSIFICATION; ANNOTATION; SIMILARITY;
D O I
10.1016/bs.apcsb.2015.07.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein interaction networks (PINs) are argued to be the richest source of hidden knowledge of the intrinsic physical and/or functional meanings of the involved proteins. We propose a novel method for computational protein function prediction based on semantic homogeneity optimization in PIN (SHOPIN). The SHOPIN method creates graph representations of the PIN augmented by inclusion of the semantics of the proteins and their interacting contexts. Network wide semantic relationships, modeled using random walks, are used to map the augmented PIN graphs in a new semantic metric space. The method produces a hierarchical partitioning of the PIN optimal in terms of semantic homogeneity by iterative optimization of the ratio of between clusters dissimilarities and within clusters similarities in the new semantic metric space. Function prediction is done using cluster wide-hierarchy high function enrichment. Results validate the rationale of the SHOPIN method placing it right next to state-of-the-art approaches performance wise.
引用
收藏
页码:323 / 349
页数:27
相关论文
共 61 条
[1]  
[Anonymous], COMPUTATIONAL APPROA
[2]   Iterative cluster analysis of protein interaction data [J].
Arnau, V ;
Mars, S ;
Marín, I .
BIOINFORMATICS, 2005, 21 (03) :364-378
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[5]   BIND - a data specification for storing and describing biomolecular interactions, molecular complexes and pathways [J].
Bader, GD ;
Hogue, CWV .
BIOINFORMATICS, 2000, 16 (05) :465-477
[6]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[7]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[8]  
Brandes U, 2003, LECT NOTES COMPUT SC, V2832, P568
[9]   The GRID: The General Repository for Interaction Datasets [J].
Breitkreutz, BJ ;
Stark, C ;
Tyers, M .
GENOME BIOLOGY, 2003, 4 (03)
[10]   Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference [J].
Cesa-Bianchi, Nicolo ;
Re, Matteo ;
Valentini, Giorgio .
MACHINE LEARNING, 2012, 88 (1-2) :209-241