Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell

被引:57
作者
Eaktasang, Numfon [1 ]
Kang, Christina S. [1 ]
Lim, Heejun [1 ]
Kwean, Oh Sung [1 ]
Cho, Suyeon [1 ]
Kim, Yohan [1 ]
Kim, Han S. [1 ]
机构
[1] Konkuk Univ, Environm Engn, 120 Neungdong Ro, Seoul 143701, South Korea
关键词
Sulfate-reducing bacteria; Desulfovibrio desulfuricans; Conductive bacterial nanofilament; Insoluble electron acceptor; Microbial fuel cell; EXTRACELLULAR ELECTRON-TRANSFER; GEOBACTER-SULFURREDUCENS; DESULFOVIBRIO-DESULFURICANS; REDUCTION; NANOWIRES; RESPIRATION; GENERATION; GRAPHITE; ACCEPTOR; FE(III);
D O I
10.1016/j.biortech.2015.12.090
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study reports that the obligate anaerobic microorganism, Desulfovibrio desulfuricans, a predominant sulfate-reducing bacterium (SRB) in soils and sediments, can produce nanoscale bacterial appendages for extracellular electron transfer. These nanofilaments were electrically-conductive (5.81 S.m(-1)) and allowed SRBs to directly colonize the surface of insoluble or solid electron acceptors. Thus, the direct extracellular electron transfer to the insoluble electrode in the microbial fuel cell (MFC) was possible without inorganic electron-shuttling mediators. The production of nanofilaments was stimulated when only insoluble electron acceptors were available for cellular respiration. These results suggest that when availability of a soluble electron acceptor for SRBs (SO42-) is limited, D. desulfuricans initiates the production of conductive nanofilaments as an alternative strategy to transfer electrons to insoluble electron acceptors. The findings of this study contribute to understanding of the role of SRBs in the biotransformation of various substances in soils and sediments and in the MFC. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:61 / 67
页数:7
相关论文
共 29 条
[1]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[2]   Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J].
Chaudhuri, SK ;
Lovley, DR .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1229-1232
[3]   Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis [J].
Childers, SE ;
Ciufo, S ;
Lovley, DR .
NATURE, 2002, 416 (6882) :767-769
[4]   Electroactive biofilms of sulphate reducing bacteria [J].
Cordas, Cristina M. ;
Guerra, L. Tiago ;
Xavier, Catarina ;
Moura, Jose J. G. .
ELECTROCHIMICA ACTA, 2008, 54 (01) :29-34
[5]   Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria [J].
Daly, K ;
Sharp, RJ ;
McCarthy, AJ .
MICROBIOLOGY-UK, 2000, 146 :1693-1705
[6]   A PHYLOGENETIC TREE OF 165 RIBOSOMAL-RNA SEQUENCES FROM SULFATE-REDUCING BACTERIA IN A SANDY MARINE SEDIMENT [J].
DEVEREUX, R ;
MUNDFROM, GW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (09) :3437-3439
[7]   Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1 [J].
El-Naggar, Mohamed Y. ;
Wanger, Greg ;
Leung, Kar Man ;
Yuzvinsky, Thomas D. ;
Southam, Gordon ;
Yang, Jun ;
Lau, Woon Ming ;
Nealson, Kenneth H. ;
Gorby, Yuri A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (42) :18127-18131
[8]   Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J].
Gorby, Yuri A. ;
Yanina, Svetlana ;
McLean, Jeffrey S. ;
Rosso, Kevin M. ;
Moyles, Dianne ;
Dohnalkova, Alice ;
Beveridge, Terry J. ;
Chang, In Seop ;
Kim, Byung Hong ;
Kim, Kyung Shik ;
Culley, David E. ;
Reed, Samantha B. ;
Romine, Margaret F. ;
Saffarini, Daad A. ;
Hill, Eric A. ;
Shi, Liang ;
Elias, Dwayne A. ;
Kennedy, David W. ;
Pinchuk, Grigoriy ;
Watanabe, Kazuya ;
Ishii, Shun'ichi ;
Logan, Bruce ;
Nealson, Kenneth H. ;
Fredrickson, Jim K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (30) :11358-11363
[9]   Graphite electrodes as electron donors for anaerobic respiration [J].
Gregory, KB ;
Bond, DR ;
Lovley, DR .
ENVIRONMENTAL MICROBIOLOGY, 2004, 6 (06) :596-604
[10]   The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough [J].
Heidelberg, JF ;
Seshadri, R ;
Haveman, SA ;
Hemme, CL ;
Paulsen, IT ;
Kolonay, JF ;
Eisen, JA ;
Ward, N ;
Methe, B ;
Brinkac, LM ;
Daugherty, SC ;
Deboy, RT ;
Dodson, RJ ;
Durkin, AS ;
Madupu, R ;
Nelson, WC ;
Sullivan, SA ;
Fouts, D ;
Haft, DH ;
Selengut, J ;
Peterson, JD ;
Davidsen, TM ;
Zafar, N ;
Zhou, LW ;
Radune, D ;
Dimitrov, G ;
Hance, M ;
Tran, K ;
Khouri, H ;
Gill, J ;
Utterback, TR ;
Feldblyum, TV ;
Wall, JD ;
Voordouw, G ;
Fraser, CM .
NATURE BIOTECHNOLOGY, 2004, 22 (05) :554-559