Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images

被引:320
作者
Ranjbarzadeh, Ramin [1 ]
Kasgari, Abbas Bagherian [2 ]
Ghoushchi, Saeid Jafarzadeh [3 ]
Anari, Shokofeh [4 ]
Naseri, Maryam [5 ]
Bendechache, Malika [6 ]
机构
[1] Univ Guilan, Fac Engn, Dept Telecommun Engn, Rasht, Iran
[2] Allameh Tabatabai Univ, Fac Management & Accounting, Tehran, Iran
[3] Urmia Univ Technol, Fac Ind Engn, Orumiyeh, Iran
[4] Islamic Azad Univ, Dept Accounting Econ & Financial Sci, South Tehran Branch, Tehran, Iran
[5] Golestan Univ, Fac Engn, Dept Chem Engn, Aliabad Katoul, Iran
[6] Dublin City Univ, Fac Engn & Comp, Sch Comp, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
NEURAL-NETWORK; CONVOLUTIONAL NETWORKS; GAS;
D O I
10.1038/s41598-021-90428-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Brain tumor localization and segmentation from magnetic resonance imaging (MRI) are hard and important tasks for several applications in the field of medical analysis. As each brain imaging modality gives unique and key details related to each part of the tumor, many recent approaches used four modalities T1, T1c, T2, and FLAIR. Although many of them obtained a promising segmentation result on the BRATS 2018 dataset, they suffer from a complex structure that needs more time to train and test. So, in this paper, to obtain a flexible and effective brain tumor segmentation system, first, we propose a preprocessing approach to work only on a small part of the image rather than the whole part of the image. This method leads to a decrease in computing time and overcomes the overfitting problems in a Cascade Deep Learning model. In the second step, as we are dealing with a smaller part of brain images in each slice, a simple and efficient Cascade Convolutional Neural Network (C-ConvNet/C-CNN) is proposed. This C-CNN model mines both local and global features in two different routes. Also, to improve the brain tumor segmentation accuracy compared with the state-of-the-art models, a novel Distance-Wise Attention (DWA) mechanism is introduced. The DWA mechanism considers the effect of the center location of the tumor and the brain inside the model. Comprehensive experiments are conducted on the BRATS 2018 dataset and show that the proposed model obtains competitive results: the proposed method achieves a mean whole tumor, enhancing tumor, and tumor core dice scores of 0.9203, 0.9113 and 0.8726 respectively. Other quantitative and qualitative assessments are presented and discussed.
引用
收藏
页数:17
相关论文
共 60 条
[1]   Enhancing breast pectoral muscle segmentation performance by using skip connections in fully convolutional network [J].
Ali, Muhammad Junaid ;
Raza, Basit ;
Shahid, Ahmad Raza ;
Mahmood, Fahad ;
Yousuf, Muhammad Adil ;
Dar, Amir Hanif ;
Iqbal, Uzair .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2020, 30 (04) :1108-1118
[2]  
[Anonymous], 2014, INT C MACHINE LEARNI
[3]   GAS: A genetic atlas selection strategy in multi-atlas segmentation framework [J].
Antonelli, Michela ;
Cardoso, M. Jorge ;
Johnston, Edward W. ;
Appayya, Mrishta Brizmohun ;
Presles, Benoit ;
Modat, Marc ;
Punwani, Shonit ;
Ourselin, Sebastien .
MEDICAL IMAGE ANALYSIS, 2019, 52 :97-108
[4]  
Azari A, 2012, IRAN J CHEM CHEM ENG, V31, P77
[5]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[6]  
Bakas Spyridon, 2017, TCIA
[7]  
Bakas Spyridon, 2017, TCIA
[8]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[9]  
Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8_26
[10]   Computer vision and deep learning techniques for pedestrian detection and tracking: A survey [J].
Brunetti, Antonio ;
Buongiorno, Domenico ;
Trotta, Gianpaolo Francesco ;
Bevilacqua, Vitoantonio .
NEUROCOMPUTING, 2018, 300 :17-33