Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs

被引:1
作者
Longo, Marcello [1 ]
机构
[1] D MATH ETH Zurich, Seminar Appl Math SAM, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
High-dimensional quadrature; quasi-Monte Carlo; Adaptivity; Finite element methods; Curse of dimensionality; CONVERGENCE; INTEGRATION; APPROXIMATION; EQUATIONS;
D O I
10.1007/s10915-022-01859-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce novel adaptive methods to approximate moments of solutions of partial differential Equations (PDEs) with uncertain parametric inputs. A typical problem in Uncertainty Quantification is the approximation of the expected values of quantities of interest of the solution, which requires the efficient numerical approximation of high-dimensional integrals. We perform this task by a class of deterministic quasi-Monte Carlo integration rules derived from Polynomial lattices, that allows to control a-posteriori the integration error without querying the governing PDE and does not incur the curse of dimensionality. Based on an abstract formulation of adaptive finite element methods (AFEM) for deterministic problems, we infer convergence of the combined adaptive algorithms in the parameter and physical space. We propose a selection of examples of PDEs admissible for these algorithms. Finally, we present numerical evidence of convergence for a model diffusion PDE.
引用
收藏
页数:24
相关论文
共 35 条
[11]  
Dick J., 2020, 202029 ETH ZUR
[12]   RICHARDSON EXTRAPOLATION OF POLYNOMIAL LATTICE RULES [J].
Dick, Josef ;
Goda, Takashi ;
Yoshiki, Takehito .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) :44-69
[13]   Higher Order Quasi-Monte Carlo Integration for Holomorphic, Parametric Operator Equations [J].
Dick, Josef ;
Le Gia, Quoc T. ;
Schwab, Christoph .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01) :48-79
[14]   HIGHER ORDER QMC PETROV-GALERKIN DISCRETIZATION FOR AFFINE PARAMETRIC OPERATOR EQUATIONS WITH RANDOM FIELD INPUTS [J].
Dick, Josef ;
Kuo, Frances Y. ;
Le Gia, Quoc T. ;
Nuyens, Dirk ;
Schwab, Christoph .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) :2676-2702
[15]   ON THE CONVERGENCE OF ADAPTIVE STOCHASTIC COLLOCATION FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH AFFINE DIFFUSION [J].
EIGEL, M. A. R. T. I. N. ;
ERNST, O. L. I. V. E. R. G. ;
SPRUNGK, B. J. O. R. N. ;
TAMELLINI, L. O. R. E. N. Z. O. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) :659-687
[16]   A CONVERGENT ADAPTIVE STOCHASTIC GALERKIN FINITE ELEMENT METHOD WITH QUASI-OPTIMAL SPATIAL MESHES [J].
Eigel, Martin ;
Gittelson, Claude Jeffrey ;
Schwab, Christofh ;
Zander, Elmar .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (05) :1367-1398
[17]   Adaptive stochastic Galerkin FEM [J].
Eigel, Martin ;
Gittelson, Claude Jeffrey ;
Schwab, Christoph ;
Zander, Elmar .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 270 :247-269
[18]   Convergence of adaptive stochastic collocation with finite elements [J].
Feischl, Michael ;
Scaglioni, Andrea .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 98 (98) :139-156
[19]   AN ABSTRACT ANALYSIS OF OPTIMAL GOAL-ORIENTED ADAPTIVITY [J].
Feischl, Michael ;
Praetorius, Dirk ;
Van der Zee, Kristoffer G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) :1423-1448
[20]  
Funken Stefan, 2011, Computational Methods in Applied Mathematics, V11, P460