Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs

被引:1
作者
Longo, Marcello [1 ]
机构
[1] D MATH ETH Zurich, Seminar Appl Math SAM, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
High-dimensional quadrature; quasi-Monte Carlo; Adaptivity; Finite element methods; Curse of dimensionality; CONVERGENCE; INTEGRATION; APPROXIMATION; EQUATIONS;
D O I
10.1007/s10915-022-01859-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce novel adaptive methods to approximate moments of solutions of partial differential Equations (PDEs) with uncertain parametric inputs. A typical problem in Uncertainty Quantification is the approximation of the expected values of quantities of interest of the solution, which requires the efficient numerical approximation of high-dimensional integrals. We perform this task by a class of deterministic quasi-Monte Carlo integration rules derived from Polynomial lattices, that allows to control a-posteriori the integration error without querying the governing PDE and does not incur the curse of dimensionality. Based on an abstract formulation of adaptive finite element methods (AFEM) for deterministic problems, we infer convergence of the combined adaptive algorithms in the parameter and physical space. We propose a selection of examples of PDEs admissible for these algorithms. Finally, we present numerical evidence of convergence for a model diffusion PDE.
引用
收藏
页数:24
相关论文
共 35 条
[1]  
[Anonymous], 2018, Monte Carlo and Quasi-Monte Carlo Methods, DOI [10.1007/978-3-319-91436-7\_13, DOI 10.1007/978-3-319-91436-713]
[2]   WEIGHTED MARKING FOR GOAL-ORIENTED ADAPTIVE FINITE ELEMENT METHODS [J].
Becker, Roland ;
Estecahandy, Elodie ;
Trujillo, David .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) :2451-2469
[3]   CONVERGENCE OF ADAPTIVE STOCHASTIC GALERKIN FEM [J].
Bespalov, Alex ;
Praetorius, Dirk ;
Rocchi, Leonardo ;
Ruggeri, Michele .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) :2359-2382
[4]   Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs [J].
Bespalov, Alex ;
Praetorius, Dirk ;
Rocchi, Leonardo ;
Ruggeri, Michele .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 :951-982
[5]  
Brezzi F., 1991, MIXED HYBRID FINITE
[6]   Axioms of adaptivity [J].
Carstensen, C. ;
Feischl, M. ;
Page, M. ;
Praetorius, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) :1195-1253
[7]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550
[8]   Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs [J].
Chkifa, Abdellah ;
Cohen, Albert ;
Schwab, Christoph .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (02) :400-428
[9]   SHAPE HOLOMORPHY OF THE STATIONARY NAVIER-STOKES EQUATIONS [J].
Cohen, Albert ;
Schwab, Christoph ;
Zech, Jakob .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (02) :1720-1752
[10]   Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs [J].
Cohen, Albert ;
DeVore, Ronald ;
Schwab, Christoph .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (06) :615-646