Nucleation and growth mechanisms of ZnO heterostructures controlled by temperature and pressure of CVD

被引:8
作者
d'Abbadie, L. [1 ]
Tan, T. T. [1 ]
Yang, C. C. [1 ]
Li, S. [1 ]
机构
[1] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2010年 / 167卷 / 01期
基金
澳大利亚研究理事会;
关键词
Zinc oxide; Chemical vapour deposition; Nanostructures; Nucleation; Growth mechanism; ZINC-OXIDE NANOSTRUCTURES; ROOM-TEMPERATURE; NANOWIRE ARRAYS; NANOBELTS; EMISSION;
D O I
10.1016/j.mseb.2010.01.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the ZnO nanostructures with different configurations were grown by using chemical vapour deposition. The morphologies of the above ZnO nanomaterials were characterized with scanning electron microscopy and the corresponding growth mechanisms were also investigated. It was demonstrated that the temperature, pressure, and time of exposure are intrinsic factors that dominate the morphologies of nanostructured ZnO. The temperature dominates different growth rates along different directions of the crystal, determining the shape of the grown ZnO structures. The pressure of furnace triggers the growth of ZnO structures from a nucleation zone, which also explains the variation of the growth direction. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 24 条
[1]   Optically pumped lasing of ZnO at room temperature [J].
Bagnall, DM ;
Chen, YF ;
Zhu, Z ;
Yao, T ;
Koyama, S ;
Shen, MY ;
Goto, T .
APPLIED PHYSICS LETTERS, 1997, 70 (17) :2230-2232
[2]   The octa-twin tetraleg ZnO nanostructures [J].
Dai, Y ;
Zhang, Y ;
Wang, ZL .
SOLID STATE COMMUNICATIONS, 2003, 126 (11) :629-633
[3]   Controllable growth of vertically aligned zinc oxide nanowires using vapour deposition [J].
Dalal, S. H. ;
Baptista, D. L. ;
Teo, K. B. K. ;
Lacerda, R. G. ;
Jefferson, D. A. ;
Milne, W. I. .
NANOTECHNOLOGY, 2006, 17 (19) :4811-4818
[4]   ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling [J].
Fan, Hong Jin ;
Barnard, Amanda S. ;
Zacharias, Margit .
APPLIED PHYSICS LETTERS, 2007, 90 (14)
[5]   Nanopropeller arrays of zinc oxide [J].
Gao, PX ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2004, 84 (15) :2883-2885
[6]   Conversion of zinc oxide nanobelts into superlattice-structured nanohelices [J].
Gao, PX ;
Ding, Y ;
Mai, WJ ;
Hughes, WL ;
Lao, CS ;
Wang, ZL .
SCIENCE, 2005, 309 (5741) :1700-1704
[7]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[8]   Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanocrystal thin films [J].
Kawasaki, M ;
Ohtomo, A ;
Ohkubo, I ;
Koinuma, H ;
Tang, ZK ;
Yu, P ;
Wong, GKL ;
Zhang, BP ;
Segawa, Y .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1998, 56 (2-3) :239-245
[9]   Synthesis of ZnO nanobelts by carbothermal reduction and their photoluminescence properties [J].
Kong, XH ;
Sun, XM ;
Li, YD .
CHEMISTRY LETTERS, 2003, 32 (06) :546-547
[10]   RETRACTED: Growth of single crystal ZnO nanorods on GaN using an aqueous solution method - art. no. 101908 (Retracted Article) [J].
Le, HQ ;
Chua, SJ ;
Koh, YW ;
Loh, KP ;
Chen, Z ;
Thompson, CV ;
Fitzgerald, EA .
APPLIED PHYSICS LETTERS, 2005, 87 (10)