Pontine influences on respiratory control in ectothermic and heterothermic vertebrates

被引:19
|
作者
Milsom, WK
Chatburn, J
Zimmer, AB
机构
[1] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada
[2] Wayne State Univ, Sch Med, Dept Anat & Cell Biol, Detroit, MI 48201 USA
基金
加拿大自然科学与工程研究理事会;
关键词
control of breathing; pontine mechanisms; rhythmogenesis; development; ontogeny; phylogeny; medulla; pons; parafacial complex; pattern of breathing; isthmus rhombencephali;
D O I
10.1016/j.resp.2004.05.008
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Respiratory rhythm generators appear both evolutionarily and developmentally as paired segmental rhythm generators in the reticular formation, associated with the motor nuclei of cranial nerves V, VII, IX, X, and XII. Those associated with the Vth and VIIth motor nuclei are "pontine" in origin and in fishes that employ a buccal suction/force pump for breathing the primary pair of respiratory rhythm generators are associated with the trigeminal nuclei. In amphibians, while the basic respiratory pump remains the same, the dominant site of respiratory rhythm generation has been assumed by the facial, glossopharyngeal and vagal motor nuclei. In reptiles, birds and mammals, in general there is a switch to an aspiration pump driven by thoraco-lumbar muscles innervated by spinal nerves. In these groups, the critical sites necessary for respiratory rhythmogenesis now sit near the ponto-medullary border, in the parafacial region (which may underlie expiratory-dominated, intercostal-abdominal breathing in non-mammalian tetrapods) and in a more caudal region, the preBotzinger complex (which may underlie inspiratory-dominated diaphragmatic breathing in mammals). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 280
页数:18
相关论文
共 50 条
  • [1] Development of respiratory rhythm generation in ectothermic vertebrates
    Hedrick, MS
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2005, 149 (1-3) : 29 - 41
  • [2] Phylogenetic trends in respiratory rhythmogenesis: Insights from ectothermic vertebrates
    Kinkead, Richard
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2009, 168 (1-2) : 39 - 48
  • [3] Maturational changes in pontine and medullary alpha-adrenoceptor influences on respiratory rhythm generation in neonatal rats
    Corcoran, Andrea E.
    Milsom, William K.
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2009, 165 (2-3) : 195 - 201
  • [4] The hypertrabeculated (noncompacted) left ventricle is different from the ventricle of embryos and ectothermic vertebrates
    Jensen, Bjarke
    Agger, Peter
    de Boer, Bouke A.
    Oostra, Roelof-Jan
    Pedersen, Michael
    van der Wal, Allard C.
    Planken, R. Nils
    Moorman, Antoon F. M.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2016, 1863 (07): : 1696 - 1706
  • [5] Pontine influences on breathing: an overview
    Alheid, GF
    Milsom, WK
    McCrimmon, DR
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2004, 143 (2-3) : 105 - 114
  • [6] Pontine cholinergic mechanisms and their impact on respiratory regulation
    Kubin, L
    Fenik, V
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2004, 143 (2-3) : 235 - 249
  • [7] Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents
    Hilaire, G
    Viemari, JC
    Coulon, P
    Simonneau, M
    Bévengut, M
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2004, 143 (2-3) : 187 - 197
  • [8] EVOCATION OF POSTURAL ATONIA AND RESPIRATORY DEPRESSION BY PONTINE CARBACHOL IN THE DECEREBRATE RAT
    TAGUCHI, O
    KUBIN, L
    PACK, AI
    BRAIN RESEARCH, 1992, 595 (01) : 107 - 115
  • [9] Origin and evolution of the respiratory tract in Vertebrates
    Roux, E
    REVUE DES MALADIES RESPIRATOIRES, 2002, 19 (05) : 601 - 615
  • [10] Phylogeny of respiratory chemoreceptor function in vertebrates
    Milsom, WK
    ZOOLOGY-ANALYSIS OF COMPLEX SYSTEMS, 1998, 101 (04): : 316 - 332