Development of high resilience spiral wound suture-embedded gelatin/PCL/heparin nanofiber membrane scaffolds for tendon tissue engineering

被引:24
作者
Darshan, T. G. [1 ]
Chen, Chih-Hao [2 ,3 ,4 ]
Kuo, Chang-Yi [1 ]
Shalumon, K. T. [5 ]
Chien, Yen-Miao [1 ]
Kao, Hao-Hsi [6 ]
Chen, Jyh-Ping [1 ,3 ,4 ,7 ,8 ,9 ]
机构
[1] Chang Gung Univ, Dept Chem & Mat Engn, Taoyuan 33302, Taiwan
[2] Chang Gung Mem Hosp, Dept Plast & Reconstruct Surg, Keelung 20401, Taiwan
[3] Chang Gung Univ, Coll Med, Dept Plast & Reconstruct Surg, Chang Gung Mem Hosp Linkou, Taoyuan 33305, Taiwan
[4] Chang Gung Univ, Coll Med, Craniofacial Res Ctr, Chang Gung Mem Hosp Linkou, Taoyuan 33305, Taiwan
[5] MG Univ, Dept Chem, Sacred Heart Coll, Kochi 682013, India
[6] Chang Gung Univ, Coll Med, Div Nephrol, Chang Gung Mem Hosp Keelung, Keelung 20401, Taiwan
[7] Chang Gung Mem Hosp Linkou, Dept Neurosurg, Taoyuan 33305, Taiwan
[8] Chang Gung Univ Sci & Technol, Res Ctr Food & Cosmet Safety, Coll Human Ecol, Taoyuan 33302, Taiwan
[9] Ming Chi Univ Technol, Dept Mat Engn, New Taipei 24301, Taiwan
关键词
Gelatin; Heparin; Tendon tissue engineering; Basic fibroblast growth factor; Scaffold; Nanofiber; FIBROBLAST-GROWTH-FACTOR; IN-VITRO; EXTRACELLULAR-MATRIX; COMPOSITE SCAFFOLD; ENERGY-DISSIPATION; ELECTROSPUN FIBERS; STEM-CELLS; HEPARIN; CHITOSAN; INJURY;
D O I
10.1016/j.ijbiomac.2022.09.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study develops a spiral wound scaffold based on gelatin/PCL/heparin (GPH) nanofiber membranes for tendon tissue engineering. By embedding sutures in dual layers of aligned GPH nanofiber membranes, prepared from mixed electrospinning of gelatin and PCL/heparin solutions, we fabricate a high resilience scaffold intended for the high loading environment experienced by tendons. The basic fibroblast growth factor (bFGF) was anchored to GPH scaffold through bioaffinity between heparin and bFGF, aim to provide biological cues for maintenance of tenogenic phenotype. In addition, the aligned nanofiber morphology is expected to provide physical cues toward seeded tenocytes. With sustained release of bFGF, GPH-bFGF can enhance proliferation, upregulate tenogenic gene expression, and increase synthesis of tendon-specific proteins by tenocytes in vitro. Furthermore, by properly maintaining tendon phenotypes, GPH-bFGF/tenocytes constructs showed improved mechanical properties over GPH-bFGF. From in vivo study using GPH-bFGF/tenocytes constructs to repair rabbit Achilles tendon defects, neotendon tissue formation was confirmed from histological staining and biomechanical analysis. These findings collectively demonstrate that the newly designed GPH-bFGF scaffold could provide a niche for inducing tendon tissue regeneration by effectively restoring the tendon tissue structure and function.
引用
收藏
页码:314 / 333
页数:20
相关论文
共 98 条
[1]   The role of energy dissipation of polymeric scaffolds in the mechanobiological modulation of chondrogenic expression [J].
Abdel-Sayed, Philippe ;
Darwiche, Salim E. ;
Kettenberger, Ulrike ;
Pioletti, Dominique P. .
BIOMATERIALS, 2014, 35 (06) :1890-1897
[2]  
Abedalwafa M, 2013, REV ADV MATER SCI, V34, P123
[3]   Regulation of fibronectin gene expression in cardiac fibroblasts by scleraxis [J].
Bagchi, Rushita A. ;
Lin, Justin ;
Wang, Ryan ;
Czubryt, Michael P. .
CELL AND TISSUE RESEARCH, 2016, 366 (02) :381-391
[4]   The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers [J].
Baker, Brendon M. ;
Gee, Albert O. ;
Metter, Robert B. ;
Nathan, Ashwin S. ;
Marklein, Ross A. ;
Burdick, Jason A. ;
Mauck, Robert L. .
BIOMATERIALS, 2008, 29 (15) :2348-2358
[5]   Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies [J].
Bazmandeh, Abbas Zakeri ;
Mirzaei, Esmaeil ;
Fadaie, Milad ;
Shirian, Sadegh ;
Ghasemi, Younes .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 162 :359-373
[6]  
Bello AB, 2020, TISSUE ENG PART B-RE, V26, P164, DOI [10.1089/ten.teb.2019.0256, 10.1089/ten.TEB.2019.0256]
[7]   Electrospinning polydioxanone for biomedical applications [J].
Boland, ED ;
Coleman, BD ;
Barnes, CP ;
Simpson, DG ;
Wnek, GE ;
Bowlin, GL .
ACTA BIOMATERIALIA, 2005, 1 (01) :115-123
[8]   Remodelling the extracellular matrix in development and disease [J].
Bonnans, Caroline ;
Chou, Jonathan ;
Werb, Zena .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2014, 15 (12) :786-801
[9]   Mechanical Properties of Animal Tendons: A Review and Comparative Study for the Identification of the Most Suitable Human Tendon Surrogates [J].
Burgio, Vito ;
Civera, Marco ;
Reinoso, Mariana Rodriguez ;
Pizzolante, Elena ;
Prezioso, Simona ;
Bertuglia, Andrea ;
Surace, Cecilia .
PROCESSES, 2022, 10 (03)
[10]   Design and synthesis of a native heparin disaccharide grafted poly-2-aminoethyl methacrylate glycopolymer for inhibition of melanoma cell metastasis [J].
Cai, Zhi ;
Teng, Liping ;
Zhou, Juan ;
Yan, Yishu ;
Zhang, Yan ;
Lv, Guozhong ;
Chen, Jinghua .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 126 :612-619