Attempts to understand the mechanisms of mitochondrial diseases: The reverse genetics of mouse models for mitochondrial disease

被引:7
作者
Ishikawa, Kaori [1 ,2 ]
Nakada, Kazuto [1 ,2 ]
机构
[1] Univ Tsukuba, Fac Life & Environm Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058572, Japan
[2] Univ Tsukuba, Grad Sch Life & Environm Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058572, Japan
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS | 2021年 / 1865卷 / 03期
基金
日本学术振兴会;
关键词
Mitochondrial diseases; Mouse model of mitochondrial disease; Mito-mice; Nuclear DNA;
D O I
10.1016/j.bbagen.2020.129835
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA). Scope of review: This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function. Major conclusions: Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well. General significance: Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.
引用
收藏
页数:13
相关论文
共 108 条
[1]  
Al Khazal F., 2019, FASEB J, V33, P13189, DOI DOI 10.1096/fj.201802655RR
[2]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[3]   Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA [J].
Andrews, RM ;
Kubacka, I ;
Chinnery, PF ;
Lightowlers, RN ;
Turnbull, DM ;
Howell, N .
NATURE GENETICS, 1999, 23 (02) :147-147
[4]  
Artusi S., 2018, DISEASES BASEL SWITZ, V6
[5]   MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation [J].
Bacman, Sandra R. ;
Kauppila, Johanna H. K. ;
Pereira, Claudia, V ;
Nissanka, Nadee ;
Miranda, Maria ;
Pinto, Milena ;
Williams, Sion L. ;
Larsson, Nils-Goeran ;
Stewart, James B. ;
Moraes, Carlos T. .
NATURE MEDICINE, 2018, 24 (11) :1696-+
[6]   Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs [J].
Bacman, Sandra R. ;
Williams, Sion L. ;
Pinto, Milena ;
Peralta, Susana ;
Moraes, Carlos T. .
NATURE MEDICINE, 2013, 19 (09) :1111-1113
[7]   Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease [J].
Bayona-Bafaluy, MP ;
Blits, B ;
Battersby, BJ ;
Shoubridge, EA ;
Moraes, CT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (40) :14392-14397
[8]   Revisiting the mouse mitochondrial DNA sequence [J].
Bayona-Bafaluy, MP ;
Acín-Pérez, R ;
Mullikin, JC ;
Park, JS ;
Moreno-Loshuertos, R ;
Hu, PQ ;
Pérez-Martos, A ;
Fernández-Silva, P ;
Bai, YD ;
Enríquez, JA .
NUCLEIC ACIDS RESEARCH, 2003, 31 (18) :5349-5355
[9]   Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer's Disease [J].
Bernardo, T. C. ;
Marques-Aleixo, I. ;
Beleza, J. ;
Oliveira, P. J. ;
Ascensao, A. ;
Magalhaes, J. .
BRAIN PATHOLOGY, 2016, 26 (05) :648-663
[10]  
Birch-Machin MA, 2000, ANN NEUROL, V48, P330, DOI 10.1002/1531-8249(200009)48:3<330::AID-ANA7>3.0.CO