Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines

被引:40
作者
Greenman, John [1 ,2 ]
Gajda, Iwona [1 ]
Ieropoulos, Ioannis [1 ]
机构
[1] Univ West England, Bristol BioEnergy Ctr BBiC, T Bldg,Frenchay Campus, Bristol BS16 1QY, Avon, England
[2] Univ West England, Fac Appl Sci, Bristol BS16 1QY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
WASTE-WATER TREATMENT; ELECTRICITY PRODUCTION; ALGAL GROWTH; ENERGY; BIOFILM; PLANT; CULTIVATION; GENERATION; RECOVERY; URINE;
D O I
10.1039/c9se00354a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Humans can exploit natural processes by microorganisms by using Microbial Fuel Cells and integrated Photo Microbial Fuel Cells (MFC/PMFC) chambers containing electrodes to maximise microbial oxidation rates and rapidly recycle mass and elements at the quickest possible rates by control over both the microbes (choice of algae and bacteria) and the applied physicochemical conditions. This review focuses on natural recycling of essential elements by microbes, the productivity of bacteria and micro-algae as a fuel, decomposition and the use of microbial fuel cells to integrate both primary biomass production (in the cathode) with its decomposition and transformation by heterotrophic microbes (at the anode). The review discusses the potential future uses of photomicrobial fuel cells as complete recycling machines with advantages over all other biological recycling systems and these include rapid re-cycling rates, production of water, removal of carbon dioxide, evolution of oxygen, and the generation (rather than utilisation) of electrical power.
引用
收藏
页码:2546 / 2560
页数:15
相关论文
共 122 条
[1]   The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells [J].
Adelaja, Oluwaseun ;
Keshavarz, Tajalli ;
Kyazze, Godfrey .
JOURNAL OF HAZARDOUS MATERIALS, 2015, 283 :211-217
[2]   Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform [J].
Agler, Matthew T. ;
Wrenn, Brian A. ;
Zinder, Stephen H. ;
Angenent, Largus T. .
TRENDS IN BIOTECHNOLOGY, 2011, 29 (02) :70-78
[3]  
[Anonymous], 1982, Ecology of coastal waters-A systems approach
[4]  
[Anonymous], ARTIFICIAL LIFE MODE
[5]   Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus [J].
Azri, Yamina Mounia ;
Tou, Insaf ;
Sadi, Meriem ;
Benhabyles, Lamia .
INTERNATIONAL JOURNAL OF GREEN ENERGY, 2018, 15 (04) :254-263
[6]   Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces [J].
Boks, Niels P. ;
Norde, Willem ;
van der Mei, Henny C. ;
Busscher, Henk J. .
MICROBIOLOGY-SGM, 2008, 154 :3122-3133
[7]   Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system [J].
Bombelli, Paolo ;
Zarrouati, Marie ;
Thorne, Rebecca J. ;
Schneider, Kenneth ;
Rowden, Stephen J. L. ;
Ali, Akin ;
Yunus, Kamran ;
Cameron, Petra J. ;
Fisher, Adrian C. ;
Wilson, D. Ian ;
Howe, Christopher J. ;
McCormick, Alistair J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (35) :12221-12229
[8]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[9]   A Bioelectrochemical Approach to Characterize Extracellular Electron Transfer by Synechocystis sp PCC6803 [J].
Cereda, Angelo ;
Hitchcock, Andrew ;
Symes, Mark D. ;
Cronin, Leroy ;
Bibby, Thomas S. ;
Jones, Anne K. .
PLOS ONE, 2014, 9 (03)
[10]  
Chapin F.S., 2011, PRINCIPLES TERRESTRI, P3, DOI DOI 10.1007/978-1-4419-9504-9_1