Analytical Approximation of Nonlinear Vibration of Euler-Bernoulli Beams

被引:6
|
作者
Jafari, S. S. [1 ]
Rashidi, M. M. [2 ,3 ]
Johnson, S. [4 ]
机构
[1] Islamic Azad Univ, Hamedan Branch, Young Researchers & Elite Club, Hamadan, Iran
[2] Tongji Univ, Shanghai Key Lab Vehicle Aerodynam & Vehicle Ther, 4800 Cao Rd, Shanghai 201804, Peoples R China
[3] ENN Tongji Clean Energy Inst Adv Studies, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Univ Michigan, Joint Inst, Shanghai 200030, Peoples R China
来源
关键词
Nonlinear vibration; Euler-Bernoulli beam; Homotopy Analysis Method (HAM); Two auxiliary parameters; Differential Transform Method (DTM); DIFFERENTIAL TRANSFORMATION METHOD; HOMOTOPY PERTURBATION; FLOW;
D O I
10.1590/1679-78252437
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, the Homotopy Analysis Method (HAM) with two auxiliary parameters and Differential Transform Method (DTM) are employed to solve the geometric nonlinear vibration of Euler-Bernoulli beams subjected to axial loads. A second auxiliary parameter is applied to the HAM to improve convergence in nonlinear systems with large deformations. The results from HAM and DTM are compared with another popular numerical method, the shooting method, to validate these two analytical methods. HAM and DTM show excellent agreement with numerical results (the maximum errors in our calculations are about 0.002%), and they additionally provide a simple way to conduct a parametric analysis with different physical parameters in Euler-Bernoulli beams. To show the benefits of this method, the effect of different physical parameters on the amplitude is discussed for a cantilever beam with a cyclically varying axial load.
引用
收藏
页码:1250 / 1264
页数:15
相关论文
共 50 条
  • [1] Study of nonlinear vibration of Euler-Bernoulli beams by using analytical approximate techniques
    Bagheri, S.
    Nikkar, A.
    Ghaffarzadeh, H.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2014, 11 (01): : 157 - 168
  • [2] An Analytical Study of Nonlinear Vibrations of Buckled Euler-Bernoulli Beams
    Pakar, I.
    Bayat, M.
    ACTA PHYSICA POLONICA A, 2013, 123 (01) : 48 - 52
  • [3] Analytical study on the non-linear vibration of Euler-Bernoulli beams
    Pakar, Iman
    Bayat, Mahmoud
    JOURNAL OF VIBROENGINEERING, 2012, 14 (01) : 216 - 224
  • [4] A new nonlinear fractal vibration of the Euler-Bernoulli beams in a microgravity space
    Zhang, Pei-Ling
    Wang, Kang-Jia
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2023, 42 (01) : 222 - 230
  • [5] Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation
    Javanmard, Mehran
    Bayat, Mahdi
    Ardakani, Alireza
    STEEL AND COMPOSITE STRUCTURES, 2013, 15 (04): : 439 - 449
  • [6] A Novel Approximate Analytical Method for Nonlinear Vibration Analysis of Euler-Bernoulli and Rayleigh Beams on the Nonlinear Elastic Foundation
    Rafieipour, Hossein
    Tabatabaei, S. Mehrdad
    Abbaspour, Mohammad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (04) : 3279 - 3287
  • [7] Passivity analysis of Nonlinear Euler-Bernoulli beams
    Fard, MP
    MODELING IDENTIFICATION AND CONTROL, 2002, 23 (04) : 239 - 258
  • [8] A Semianalytical Method for Nonlinear Vibration of Euler-Bernoulli Beams with General Boundary Conditions
    Peng, Jian-She
    Liu, Yan
    Yang, Jie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [9] Non-linear vibration of Euler-Bernoulli beams
    Barari, A.
    Kaliji, H. D.
    Ghadimi, M.
    Domairry, G.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2011, 8 (02): : 139 - 148
  • [10] ON THE NONLINEAR DEFORMATION GEOMETRY OF EULER-BERNOULLI BEAMS.
    Hodges, Dewey H.
    Ormiston, Robert A.
    Peters, David A.
    NASA Technical Paper, 1980, (1566):