Nonequilibrium tricritical point in a system with long-range interactions

被引:84
作者
Antoniazzi, Andrea
Fanelli, Duccio
Ruffo, Stefano
Yamaguchi, Yoshiyuki Y.
机构
[1] Univ Florence, Dipartimento Energet, I-50139 Florence, Italy
[2] Univ Florence, CSDC, I-50139 Florence, Italy
[3] Ist Nazl Fis Nucl, I-50139 Florence, Italy
[4] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[5] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
D O I
10.1103/PhysRevLett.99.040601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Systems with long-range interactions display a short-time relaxation towards quasistationary states whose lifetime increases with system size. With reference to the Hamiltonian mean field model, we here show that a maximum entropy principle, based on Lynden-Bell's pioneering idea of "violent relaxation," predicts the presence of out-of-equilibrium phase transitions separating the relaxation towards homogeneous (zero magnetization) or inhomogeneous (nonzero magnetization) quasistationary states. When varying the initial condition within a family of "water bags" with different initial magnetization and energy, first- and second-order phase transition lines are found that merge at an out-of-equilibrium tricritical point. Metastability is theoretically predicted and numerically checked around the first-order phase transition line.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 2002, Dynamics and Thermodynamics of Systems with Long-Range Interactions
[2]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[3]  
ANTONIAZZI A, IN PRESS COMMUN NONL
[4]   Exploring the thermodynamic limit of Hamiltonian models: Convergence to the Vlasov equation [J].
Antoniazzi, Andrea ;
Califano, Francesco ;
Fanelli, Duccio ;
Ruffo, Stefano .
PHYSICAL REVIEW LETTERS, 2007, 98 (15)
[5]   Maximum entropy principle explains quasistationary states in systems with long-range interactions:: The example of the Hamiltonian mean-field model [J].
Antoniazzi, Andrea ;
Fanelli, Duccio ;
Barre, Julien ;
Chavanis, Pierre-Henri ;
Dauxois, Thierry ;
Ruffo, Stefano .
PHYSICAL REVIEW E, 2007, 75 (01)
[6]   Statistical theory of high-gain free-electron laser saturation -: art. no. 045501 [J].
Barré, J ;
Dauxois, T ;
De Ninno, G ;
Fanelli, D ;
Ruffo, S .
PHYSICAL REVIEW E, 2004, 69 (04) :4
[7]   Inequivalence of ensembles in a system with long-range Interactions -: art. no. 030601 [J].
Barré, J ;
Mukamel, D ;
Ruffo, S .
PHYSICAL REVIEW LETTERS, 2001, 87 (03) :30601-1
[8]   Relaxation to Boltzmann equilibrium of 2D Coulomb oscillators [J].
Benedetti, C ;
Rambaldi, S ;
Turchetti, G .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 (197-212) :197-212
[9]   Classification of phase transitions and ensemble inequivalence, in systems with long range interactions [J].
Bouchet, F ;
Barré, J .
JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (5-6) :1073-1105
[10]   Lynden-Bell and Tsallis distributions for the HMF model [J].
Chavanis, P. H. .
EUROPEAN PHYSICAL JOURNAL B, 2006, 53 (04) :487-501