Thermal behavior of MnFe2O4 and MnFe2O4/C nanocomposite synthesized by a solvothermal method

被引:30
作者
Stoia, Marcela [1 ,2 ]
Muntean, Eliza [1 ]
Pacurariu, Cornelia [1 ]
Mihali, Ciprian [3 ]
机构
[1] Politehn Univ Timisoara, Fac Ind Chem & Environm Engn, 6 Pirvan Blv, RO-300223 Timisoara, Romania
[2] Politehn Univ Timisoara, Res Inst Renewable Energy, P Ta Victoriei 2, Timisoara 300006, Romania
[3] Vasile Goldis Western Univ Arad, Inst Life Sci, 86 Liviu Rebreanu St, Arad 310414, Romania
关键词
Manganese ferrite; Activated carbon; Nanocomposite; Nanopowder; Thermal analysis; MANGANESE FERRITE NANOPARTICLES; MAGNETITE NANOPARTICLES; CARBON; PERFORMANCE;
D O I
10.1016/j.tca.2017.03.009
中图分类号
O414.1 [热力学];
学科分类号
摘要
A new solvothermal method for MnFe2O4 nanoparticles and MnFe2O4/C nanocomposite synthesis is reported. Manganese ferrite nanoparticles thus sinthesized are not stable at thermal treatment in oxidizing atmosphere, due to Mn(II) oxidation to Mn(III), evidenced at 640 degrees C by thermal analysis. The FTIR spectroscopy also confirmed the oxidation of Mn(II) to Mn(III). XRD analysis has revealed the complete decomposition of manganese ferrite around 700 degrees C. The specific surface area of the composite with activated carbon was much higher (253 m(2) g(-1)), in comparison with that of the naked ferrite (65 m(2) g(-1)). Scanning electron microscopy and transmission electron microscopy images evidenced the obtaining of nearly spherical ferrite nanoparticles, with diameters within the range 10 nm - 30 nm, loaded on the surface of activated carbon in case of the composite. The magnetization of the synthesized composite (30 emu g(-1)) was below the one of naked manganese ferrite (40 emu g(-1)), but sufficient to insure a facile magnetic separation of the composite from aqueous solution, in case of its use as adsorbent for pollutant removal. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 36 条
[1]   Preparation of nano-sized manganese ferrite (MnFe2O4) via coprecipitation method [J].
Amighian, J. ;
Mozaffari, M. ;
Nasr, B. .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3, NO 9, 2006, 3 (09) :3188-+
[2]  
[Anonymous], 2012, POWD DIFFR FIL PDF 4
[3]  
[Anonymous], 2011, Int. J. Appl. Sci. Eng., DOI DOI 10.6703/IJASE.2011.9(4).223
[4]  
[Anonymous], 2012, MATER CHEM PHYS, DOI [DOI 10.1016/J.MATCHEMPHYS.2012.03.035, DOI 10.1016/J.MATCHEM-PHYS.2012.03.035]
[5]   INFRARED-ABSORPTION SPECTRUM AND INVERSION DEGREE OF MANGANESE FERRITE [J].
BRABERS, VAM ;
KLERK, J .
SOLID STATE COMMUNICATIONS, 1974, 14 (07) :613-615
[6]   A total X-ray scattering study of MnFe2O4 nanoparticles dispersed in a silica aerogel matrix [J].
Carta, D. ;
Corrias, A. ;
Navarra, G. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (14) :2600-2603
[7]   Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study [J].
Carta, Daniela ;
Casula, Maria Francesca ;
Mountjoy, Gavin ;
Corrias, Anna .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (21) :3108-3117
[8]   Effect of the Incorporation of Proteins on the Performance of Carbon Paste Electrodes Modified with Electrogenerated Magnetite Nanoparticles towards the Reduction of Hydrogen Peroxide [J].
Comba, Fausto N. ;
Gutierrez, Fabiana ;
Herrasti, Pilar ;
Rubianes, Maria D. ;
Rivas, Gustavo A. .
ELECTROANALYSIS, 2012, 24 (07) :1541-1546
[9]   Synthesis and characterizations of manganese ferrites for hyperthermia applications [J].
Doaga, A. ;
Cojocariu, A. M. ;
Amin, W. ;
Heib, F. ;
Bender, P. ;
Hempelmann, R. ;
Caltun, O. F. .
MATERIALS CHEMISTRY AND PHYSICS, 2013, 143 (01) :305-310
[10]   Remote control of cellular behaviour with magnetic nanoparticles [J].
Dobson, Jon .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :139-143