A NOTE ON K-THEORY OF AZUMAYA ALGEBRAS

被引:4
作者
Hazrat, Roozbeh [1 ]
Millar, Judith R. [1 ]
机构
[1] Queens Univ Belfast, Dept Pure Math, Belfast BT7 1NN, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
Azumaya algebras; K-Theory; DIVISION-ALGEBRAS;
D O I
10.1080/00927870902828710
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an Azumaya algebra A which is free over its centre R, we prove that K-theory of A is isomorphic to K-theory of R up to its rank torsions. We conclude that K-i(A, Z/m) = K-i(R, Z/m) for any m relatively prime to the rank and i >= 0. This covers, for example, K-theory of division algebras, K-theory of Azumaya algebras over semilocal rings, and K-theory of graded central simple algebras indexed by a totally ordered abelian group.
引用
收藏
页码:919 / 926
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1989, ALGEBRA
[2]  
[Anonymous], 1991, Quadratic and Hermitian Forms over Rings
[3]  
Auslander M., 1960, T AM MATH SOC, V97, P367, DOI DOI 10.2307/1993378
[4]  
AZUMAYA G., 1951, Nagoya Math. J., V2, P119
[5]  
BASS H, 1967, TATA I FUNDAMENTAL R, V0041
[6]   THE GRADED ORDER OF A VALUED DIVISION ALGEBRA [J].
BOULAGOUAZ, M .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (11) :4275-4300
[7]  
Bourbaki Nicolas, 1989, Elements of Mathematics (Berlin)
[8]   HOMOLOGY OF AZUMAYA ALGEBRAS [J].
CORTINAS, G ;
WEIBEL, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (01) :53-55
[9]  
DAWKINS BP, 1966, CAN J MATH, V18, P1333
[10]  
Green S., 1978, J PURE APPL ALGEBRA, V12, P153