Embeddings, Hardy operators and nonlinear problems

被引:1
|
作者
Edmunds, D. E. [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
来源
REVISTA MATEMATICA COMPLUTENSE | 2010年 / 23卷 / 02期
关键词
Embeddings; Function spaces; Hardy operators; Entropy numbers; s-numbers; Compact linear operators; p-Laplacian; APPROXIMATION NUMBERS; SOBOLEV EMBEDDINGS; ENTROPY NUMBERS; BESOV-SPACES; LIMITING EMBEDDINGS; COMPACT EMBEDDINGS; VARIABLE EXPONENT; SHARP SOBOLEV; ORLICZ; NONCOMPACTNESS;
D O I
10.1007/s13163-009-0016-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey some of the recent developments involving embeddings between function spaces. Emphasis is placed on improvements of classical Sobolev inequalities, the reduction of embedding questions to problems involving Hardy operators, and quantitative estimates of compactness of embeddings that have applications to the spectral theory of operators. We also consider a nonlinear eigenvalue problem which leads to a series representation of compact linear operators acting between Banach spaces, under mild restrictions on the spaces, thus establishing a complete analogue of E. Schmidt's classical Hilbert space theorem for compact operators. Information about relevant embedding maps enables the Dirichlet problem for the p-Laplacian to be studied, and a brief discussion is given of the generalizations of the trigonometric functions that appear naturally in this connection.
引用
收藏
页码:267 / 319
页数:53
相关论文
共 50 条
  • [41] Sobolev-Poincare embeddings for operators on harmonic forms on Manifolds
    Ding, SS
    Bao, GJ
    Xing, YM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (2-3) : 259 - 270
  • [42] Compact embeddings and indefinite semilinear elliptic problems
    Schneider, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (02) : 283 - 303
  • [43] ATOMIC CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED TO SCHRODINGER TYPE OPERATORS
    Zhang, Junqiang
    Liu, Zongguang
    ADVANCES IN OPERATOR THEORY, 2019, 4 (03) : 604 - 624
  • [44] Sublinear operators on Herz-Hardy spaces with variable exponents
    Ho, Kwok-Pun
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (05) : 876 - 889
  • [45] Weighted multilinear p-adic Hardy operators and commutators
    Liu, Ronghui
    Zhou, Jiang
    OPEN MATHEMATICS, 2017, 15 : 1623 - 1634
  • [46] Boundedness of Hardy operators on grand variable weighted Herz spaces
    Sultan, Babar
    Sultan, Mehvish
    Zhang, Qian-Qian
    Mlaiki, Nabil
    AIMS MATHEMATICS, 2023, 8 (10): : 24515 - 24527
  • [47] Boundedness and compactness of Hardy operators on Lorentz-type spaces
    Li, Hongliang
    Kaminska, Anna
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (5-6) : 852 - 866
  • [48] Approximation Numbers of Composition Operators on the Hardy Space of the Infinite Polydisk
    Li, Daniel
    Queffelec, Herve
    Rodriguez-Piazza, Luis
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 89 (04) : 493 - 505
  • [49] Approximation Numbers of Composition Operators on the Hardy Space of the Infinite Polydisk
    Daniel Li
    Hervé Queffélec
    Luis Rodríguez-Piazza
    Integral Equations and Operator Theory, 2017, 89 : 493 - 505
  • [50] Compact embeddings in the generalized Sobolev space W01,p(.)(G) and existence of solutions for nonlinear elliptic problems
    Ohno, Takao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1534 - 1541