Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process

被引:78
|
作者
Ye, Maoyou [1 ,3 ]
Yan, Pingfang [1 ,3 ]
Sun, Shuiyu [1 ,2 ,3 ]
Han, Dajian [1 ]
Xiao, Xiao [1 ]
Zheng, Li [1 ,3 ]
Huang, Shaosong [1 ,3 ]
Chen, Yun [1 ]
Zhuang, Shengwei [1 ]
机构
[1] Guangdong Univ Technol, Sch Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Polytech Coll Environm Protect Engn, Foshan 528216, Peoples R China
[3] Key Lab Min & Met Ind Heavy Met Pollut Control En, Guangzhou 510006, Guangdong, Peoples R China
关键词
Bioleaching; Brine leaching; Mine tailings; Heavy metal; Transformation; Lead; ACIDITHIOBACILLUS-FERROOXIDANS; MIXED CULTURE; ACIDOPHILIC BACTERIA; SULFIDE OXIDATION; COPPER SULFIDE; RECOVERY; SOIL; THIOOXIDANS; NICKEL; PRECIPITATION;
D O I
10.1016/j.chemosphere.2016.10.095
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
During the process of bioleaching, lead (Pb) recovery is low. This low recovery is caused by a problem with the bioleaching technique. This research investigated the bioleaching combination of bioleaching with brine leaching to remove heavy metals from lead-zinc mine tailings. The impact of different parameters were studied, including the effects of initial pH (1.5-3.0) and solid concentration (5-20%) for bioleaching, and the effects of sodium chloride (NaCI) concentration (10-200 g/L) and temperature (25 and 50 degrees C) for brine leaching. Complementary characterization experiments (Sequential extraction, X-ray diffractometer (XRD), scanning electronic microscope (SEM)) were also conducted to explore the transformation of tailings during the leaching process. The results showed that bioleaching efficiency was significantly influenced by initial pH and solid concentration. Approximately 85.45% of iron (Fe), 4.12% of Pb, and 97.85% of zinc (Zn) were recovered through bioleaching in optimum conditions. Increasing the brine concentration and temperature promoted lead recovery. Lead was recovered from the bioleaching residues at a rate of 94.70% at 25 degrees C and at a rate of 99.46% at 50 degrees C when the NaCI concentration was 150 g/L. The study showed that bioleaching significantly changed the speciation of heavy metals and the formation and surface morphology of tailings. The metals were mainly bound in stable fractions after bioleaching. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1115 / 1125
页数:11
相关论文
共 50 条
  • [21] Potential risk, leaching behavior and mechanism of heavy metals from mine tailings under acid rain
    Li W.
    Deng Y.
    Wang H.
    Hu Y.
    Cheng H.
    Chemosphere, 2024, 350
  • [22] Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp.
    Van Khanh Nguyen
    Lee, Mu Hyun
    Park, Hyung Jun
    Lee, Jong-Un
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 21 : 451 - 458
  • [23] Studies on Recovery of Valuable Metals by Leaching Lead-Zinc Smelting Waste with Sulfuric Acid
    Xin, Chunfu
    Xia, Hongying
    Jiang, Guiyu
    Zhang, Qi
    Zhang, Libo
    Xu, Yingjie
    MINERALS, 2022, 12 (10)
  • [24] Contamination and health risk assessment of heavy metals in China's lead-zinc mine tailings: A meta-analysis
    Kan, Xiaoqing
    Dong, Yiqie
    Feng, Lu
    Zhou, Min
    Hou, Haobo
    CHEMOSPHERE, 2021, 267
  • [25] Progress, Challenges, and Perspectives of Bioleaching for Recovering Heavy Metals from Mine Tailings
    Gao, Xiufang
    Jiang, Li
    Mao, Yilin
    Yao, Bin
    Jiang, Peihua
    ADSORPTION SCIENCE & TECHNOLOGY, 2021, 2021
  • [26] Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration
    Liu, Yun-Guo
    Zhou, Ming
    Zeng, Guang-Ming
    Wang, Xin
    Li, Xin
    Fan, Ting
    Xu, Wei-Hua
    BIORESOURCE TECHNOLOGY, 2008, 99 (10) : 4124 - 4129
  • [27] Solidification/stabilization of heavy metals and its efficiency in lead-zinc tailings using different chemical agents
    Luo, Zhongtao
    Tang, Changbo
    Hao, Yuhua
    Wang, Zhenhua
    Yang, Guangjun
    Wang, Yu
    Mu, Yuandong
    ENVIRONMENTAL TECHNOLOGY, 2022, 43 (11) : 1613 - 1623
  • [28] Preparation of ceramsite from lead-zinc tailings and coal gangue: Physical properties and solidification of heavy metals
    Luo, Zhongtao
    Guo, Jinyang
    Liu, Xiaohai
    Mu, Yuandong
    Zhang, Meixiang
    Zhang, Meng
    Tian, Chongfei
    Ou, Jiahui
    Mi, Jie
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 368
  • [29] Recovery of Zinc and Copper from Mine Tailings by Acid Leaching Solutions Combined with Carbon-Based Materials
    Alvarez, Maria Luisa
    Mendez, Ana
    Rodriguez-Pacheco, Roberto
    Paz-Ferreiro, Jorge
    Gasco, Gabriel
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [30] A Novel Process for Extracting Lead and Zinc from Low-Grade Lead-Zinc Ore Via Low-Temperature Chlorination Roasting and Water Leaching
    Chen, Qing
    Xu, Piao
    Huang, Yu
    Liu, Chaxiang
    Wei, Bohan
    Xie, Boyi
    Wang, Ruixiang
    Zhong, Xiaocong
    Zhang, Zhongtang
    Xu, Zhifeng
    JOURNAL OF SUSTAINABLE METALLURGY, 2025, 11 (01) : 330 - 339