Convergence Rate of Galerkin Method for a Certain Class of Nonlinear Operator-Differential Equations

被引:3
作者
Vinogradova, Polina [1 ]
机构
[1] Far Eastern State Transport Univ, Dept Nat Sci, Serisheva, Russia
关键词
Cauchy problem; Convergence; Galerkin method; Hilbert space; Nonstationary equation; Orthogonal projection;
D O I
10.1080/01630561003757728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a Galerkin method for a nonstationary operator equation with a leading self-adjoint operator A(t) and a subordinate nonlinear operator F. The existence of the strong solutions of the Cauchy problem for differential and approximate equations are proved. New error estimates for the approximate solutions and their derivatives are obtained. The developed method is applied to an initial boundary value problem for a partial differential equation of parabolic type.
引用
收藏
页码:339 / 365
页数:27
相关论文
共 15 条
[1]  
Beckenbach F., 1961, INEQUALITIES
[2]  
Gagliardo E., 1959, RIC MAT, V8, P24
[3]  
Gajewski H., 1974, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen
[4]  
KREIN SG, 1971, T MATH MONO, V29
[5]  
Ladyzhenskaya O.A., 1973, Linear and quasilinear equations of elliptic type, V2nd
[6]  
LADYZHENSKAYA OA, 1968, T MATH MONO, V23
[7]  
MICHLIN SG, 1962, VARIATIONS METHODEN
[8]  
Nirenberg L., 1959, ANN SCUOLA NORM-SCI, V13, P115
[9]  
OJA P, 1975, TRUD MATEM MEH, V17, P194
[10]  
Smagin V.V., 1997, MAT SBORNIK, V188, P143