Synthesis of reduced graphene oxide-TiO2 nanoparticle composite systems and its application in hydrogen production

被引:97
作者
Dubey, Pawan Kumar [1 ]
Tripathi, Prashant [1 ]
Tiwari, R. S. [1 ]
Sinha, A. S. K. [2 ]
Srivastava, O. N. [1 ]
机构
[1] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, Indian Inst Technol, Dept Chem Engn & Technol, Varanasi 221005, Uttar Pradesh, India
关键词
TiO2; nanoparticles; Hydrogen production; Water electrolysis; Graphene; Nanocomposite; CARBON NANOTUBES; TIO2-GRAPHENE NANOCOMPOSITES; GRAPHITE OXIDE; PHOTOCATALYTIC DEGRADATION; ELECTRIC-FIELD; SOLAR-CELLS; TIO2; REDUCTION; TRANSPORT; NANOPLATELETS;
D O I
10.1016/j.ijhydene.2014.03.104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The utilization of solar energy for the conversion of water to hydrogen and oxygen has been considered to be an efficient strategy to solve crisis of energy and environment. Here, we report the synthesis of reduced graphene oxide-TiO2 nanoparticle composite system through the photocatalytic reduction of graphite oxide using TiO2 nanoparticles. Photoelectrochemical characterizations and hydrogen evolution measurements of these nanocomposites reveal that the presence of graphene enhances the photocurrent density and hydrogen generation rate. The optimum photocurrent density and hydrogen generation rate has been found to be 3.4 mA cm(-2) and 127.5 mu mole cm(-2)h(-1) in 0.5 M Na2SO4 electrolyte solution under 1.5AM solar irradiance of white light with illumination intensity of 100 mW cm(-2). In graphene TiO2 nanocomposite, photogenerated electrons in TiO2 are scavenged by graphene sheets and percolate to counter electrode to reduce H+ to molecular hydrogen thus increasing the performance of water-splitting reaction. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:16282 / 16292
页数:11
相关论文
共 60 条
  • [1] Electron transport and full-band electron-phonon interactions in graphene
    Akturk, Akin
    Goldsman, Neil
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (05)
  • [2] Visible-light photocatalysis in nitrogen-doped titanium oxides
    Asahi, R
    Morikawa, T
    Ohwaki, T
    Aoki, K
    Taga, Y
    [J]. SCIENCE, 2001, 293 (5528) : 269 - 271
  • [3] Submicron sensors of local electric field with single-electron resolution at room temperature
    Barbolina, II
    Novoselov, KS
    Morozov, SV
    Dubonos, SV
    Missous, M
    Volkov, AO
    Christian, DA
    Grigorieva, IV
    Geim, AK
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (01)
  • [4] Cassagneau T, 1998, ADV MATER, V10, P877, DOI 10.1002/(SICI)1521-4095(199808)10:11<877::AID-ADMA877>3.0.CO
  • [5] 2-1
  • [6] Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites with p/n Heterojunction
    Chen, Chao
    Cai, Weimin
    Long, Mingce
    Zhou, Baoxue
    Wu, Yahui
    Wu, Deyong
    Feng, Yujie
    [J]. ACS NANO, 2010, 4 (11) : 6425 - 6432
  • [7] In Situ Thermal Preparation of Polyimide Nanocomposite Films Containing Functionalized Graphene Sheets
    Chen, Dan
    Zhu, Hong
    Liu, Tianxi
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (12) : 3702 - 3708
  • [8] Printed graphene circuits
    Chen, Jian-Hao
    Ishigami, Masa
    Jang, Chaun
    Hines, Daniel R.
    Fuhrer, Michael S.
    Williams, Ellen D.
    [J]. ADVANCED MATERIALS, 2007, 19 (21) : 3623 - 3627
  • [9] TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water
    Cheng, Ping
    Yang, Zhi
    Wang, Hong
    Cheng, Wei
    Chen, Mingxia
    Shangguan, Wenfeng
    Ding, Guifu
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) : 2224 - 2230
  • [10] Substrate-interface interactions between carbon nanotubes and the supporting substrate
    Czerw, R
    Foley, B
    Tekleab, D
    Rubio, A
    Ajayan, PM
    Carroll, DL
    [J]. PHYSICAL REVIEW B, 2002, 66 (03) : 334081 - 334084