Whole-Cell Models and Simulations in Molecular Detail

被引:42
作者
Feig, Michael [1 ,2 ]
Sugita, Yuji [2 ,3 ]
机构
[1] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[2] RIKEN Ctr Biosyst Dynam Res, Lab Biomol Funct Simulat, Kobe, Hyogo 6500047, Japan
[3] RIKEN Cluster Pioneering Res, Theoret Mol Sci Lab, Wako, Saitama 3510198, Japan
来源
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 35 | 2019年 / 35卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
crowding; systems biology; protein structure; molecular dynamics simulation; network models; PROTEIN-STRUCTURE DETERMINATION; BROWNIAN DYNAMICS SIMULATIONS; ENHANCED SAMPLING ALGORITHMS; LIQUID PHASE-SEPARATION; FORCE-FIELD; HYDRODYNAMIC INTERACTIONS; MEMBRANE-PROTEINS; BIOLOGICAL-MEMBRANES; DISORDERED PROTEINS; HYBRID-PARALLEL;
D O I
10.1146/annurev-cellbio-100617-062542
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Comprehensive data about the composition and structure of cellular components have enabled the construction of quantitative whole-cell models. While kinetic network-type models have been established, it is also becoming possible to build physical, molecular-level models of cellular environments. This review outlines challenges in constructing and simulating such models and discusses near- and long-term opportunities for developing physical whole-cell models that can connect molecular structure with biological function.
引用
收藏
页码:191 / 211
页数:21
相关论文
共 50 条
[41]   Diffusion of methane in a mica slit pore: Molecular dynamics simulations and correlation models [J].
Yu, Yongqiang ;
Zhang, Bing-Jian .
PHYSICS LETTERS A, 2007, 364 (3-4) :313-317
[42]   Molecular dynamics simulations of kinetic models for chiral dominance in soft condensed matter [J].
Toxvaerd, S .
POLISH JOURNAL OF CHEMISTRY, 2001, 75 (04) :579-585
[43]   Study of the Alzheimer's Aβ40 peptide in SDS micelles using molecular dynamics simulations [J].
Jalili, Seifollah ;
Akhavan, Mojdeh .
BIOPHYSICAL CHEMISTRY, 2011, 153 (2-3) :179-186
[44]   Atomistic molecular simulations of Aβ-Zn conformational ensembles [J].
Aduriz-Arrizabalaga, Julen ;
Lopez, Xabier ;
De Sancho, David .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2024, 92 (01) :134-144
[45]   Molecular dynamics simulations on networks of heparin and collagen [J].
Kulke, Martin ;
Geist, Norman ;
Friedrichs, Wenke ;
Langel, Walter .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2017, 85 (06) :1119-1130
[46]   Molecular Dynamics Simulations of the Dimerization of Transmembrane α-Helices [J].
Psachoulia, Emi ;
Marshall, David P. ;
Sansom, Mark S. P. .
ACCOUNTS OF CHEMICAL RESEARCH, 2010, 43 (03) :388-396
[47]   Molecular dynamics simulations on the melting of gold nanoparticles [J].
Qiao, Zhiwei ;
Feng, Haijun ;
Zhou, Jian .
PHASE TRANSITIONS, 2014, 87 (01) :59-70
[48]   The role of molecular simulations in understanding the mechanisms of cell-penetrating peptides [J].
Reid, Lauren M. ;
Verma, Chandra S. ;
Essex, Jonathan W. .
DRUG DISCOVERY TODAY, 2019, 24 (09) :1821-1835
[49]   On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models [J].
Winger, Moritz ;
Trzesniak, Daniel ;
Baron, Riccardo ;
van Gunsteren, Wilfred F. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (12) :1934-1941
[50]   Advancing Molecular Simulations: Merging Physical Models, Experiments, and AI to Tackle Multiscale Complexity [J].
Bonollo, Giorgio ;
Treves, Gauthier ;
Komarov, Denis ;
Mansoor, Samman ;
Moroni, Elisabetta ;
Colombo, Giorgio .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, :3606-3615