Whole-Cell Models and Simulations in Molecular Detail

被引:44
作者
Feig, Michael [1 ,2 ]
Sugita, Yuji [2 ,3 ]
机构
[1] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[2] RIKEN Ctr Biosyst Dynam Res, Lab Biomol Funct Simulat, Kobe, Hyogo 6500047, Japan
[3] RIKEN Cluster Pioneering Res, Theoret Mol Sci Lab, Wako, Saitama 3510198, Japan
来源
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 35 | 2019年 / 35卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
crowding; systems biology; protein structure; molecular dynamics simulation; network models; PROTEIN-STRUCTURE DETERMINATION; BROWNIAN DYNAMICS SIMULATIONS; ENHANCED SAMPLING ALGORITHMS; LIQUID PHASE-SEPARATION; FORCE-FIELD; HYDRODYNAMIC INTERACTIONS; MEMBRANE-PROTEINS; BIOLOGICAL-MEMBRANES; DISORDERED PROTEINS; HYBRID-PARALLEL;
D O I
10.1146/annurev-cellbio-100617-062542
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Comprehensive data about the composition and structure of cellular components have enabled the construction of quantitative whole-cell models. While kinetic network-type models have been established, it is also becoming possible to build physical, molecular-level models of cellular environments. This review outlines challenges in constructing and simulating such models and discusses near- and long-term opportunities for developing physical whole-cell models that can connect molecular structure with biological function.
引用
收藏
页码:191 / 211
页数:21
相关论文
共 165 条
[1]   Macromolecular crowding at membrane interfaces:: Adsorption and alignment of membrane peptides [J].
Aisenbrey, Christopher ;
Bechinger, Burkhard ;
Groebner, Gerhard .
JOURNAL OF MOLECULAR BIOLOGY, 2008, 375 (02) :376-385
[2]   De novo high-resolution protein structure determination from sparse spin-labeling EPR data [J].
Alexander, Nathan ;
Bortolus, Marco ;
Al-Mestarihi, Ahmad ;
Mchaourab, Hassane ;
Meilerl, Jens .
STRUCTURE, 2008, 16 (02) :181-195
[3]   Sliding of Proteins Non-specifically Bound to DNA: Brownian Dynamics Studies with Coarse-Grained Protein and DNA Models [J].
Ando, Tadashi ;
Skolnick, Jeffrey .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (12)
[4]   Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations [J].
Ando, Tadashi ;
Chow, Edmond ;
Saad, Yousef ;
Skolnick, Jeffrey .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (06)
[5]   Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion [J].
Ando, Tadashi ;
Skolnick, Jeffrey .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (43) :18457-18462
[6]   Computer simulations of membrane proteins [J].
Ash, WL ;
Zlomislic, MR ;
Oloo, EO ;
Tieleman, DP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2004, 1666 (1-2) :158-189
[7]   Anisotropy of fluctuation dynamics of proteins with an elastic network model [J].
Atilgan, AR ;
Durell, SR ;
Jernigan, RL ;
Demirel, MC ;
Keskin, O ;
Bahar, I .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :505-515
[8]   Elastic rod model of a DNA loop in the lac operon [J].
Balaeff, A ;
Mahadevan, L ;
Schulten, K .
PHYSICAL REVIEW LETTERS, 1999, 83 (23) :4900-4903
[9]   Intrinsically Disordered Protein Exhibits Both Compaction and Expansion under Macromolecular Crowding [J].
Banks, Anthony ;
Qin, Sanbo ;
Weiss, Kevin L. ;
Stanley, Christopher B. ;
Zhou, Huan-Xiang .
BIOPHYSICAL JOURNAL, 2018, 114 (05) :1067-1079
[10]   Anomalous diffusion of proteins due to molecular crowding [J].
Banks, DS ;
Fradin, C .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :2960-2971