CRITICAL POINTS OF THE CLASSICAL EISENSTEIN SERIES OF WEIGHT TWO

被引:14
作者
Chen, Zhijie [1 ]
Lin, Chang-Shou [2 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Dept Math Sci, Beijing 100084, Peoples R China
[2] Natl Taiwan Univ, TIMS, CASTS, Taipei 10617, Taiwan
基金
中国国家自然科学基金;
关键词
MEAN-FIELD EQUATIONS;
D O I
10.4310/jdg/1571882423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we completely determine the critical points of the normalized Eisenstein series E-2(tau) of weight 2. Although E-2(tau) is not a modular form, our result shows that E-2(tau) has at most one critical point in every fundamental domain of the form gamma(F-0) of Gamma(0)(2), where gamma(F-0) are translates of the basic fundamental domain F-0 via the Mobius transformation of gamma is an element of Gamma(0)(2). We also give a criteria for such fundamental domain containing a critical point of E-2(tau). Furthermore, under the Mobius transformations of Gamma(0)(2) action, all critical points can be mapped into the basic fundamental domain F-0 and their images in F-0 give rise to a dense subset of the union of three connected smooth curves in F-0. A geometric interpretation of these smooth curves is also given. It turns out that these curves coincide with the degeneracy curves of trivial critical points of a multiple Green function related to flat tori.
引用
收藏
页码:189 / 226
页数:38
相关论文
共 18 条
[1]   Non-canonical extension of θ-functions and modular integrability of θ-constants [J].
Brezhnev, Yurii V. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (04) :689-738
[2]   Mean field equations, hyperelliptic curves and modular forms: I [J].
Chai, Ching-Li ;
Lin, Chang-Shou ;
Wang, Chin-Lung .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2015, 3 (1-2) :127-274
[3]  
Chen Z., COMM ANAL GEOM
[4]   Simple zero property of some holomorphic functions on the moduli space of tori [J].
Chen, Zhijie ;
Kuo, Ting-Jung ;
Lin, Chang-Shou .
SCIENCE CHINA-MATHEMATICS, 2019, 62 (11) :2089-2102
[5]   On reducible monodromy representations of some generalized Lame equation [J].
Chen, Zhijie ;
Kuo, Ting-Jung ;
Lin, Chang-Shou ;
Takemura, Kouichi .
MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) :679-688
[6]   GREEN FUNCTION, PAINLEVE VI EQUATION, AND EISENSTEIN SERIES OF WEIGHT ONE [J].
Chen, Zhijie ;
Kuo, Ting-Jung ;
Lin, Chang-Shou ;
Wang, Chin-Lung .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 108 (02) :185-241
[7]  
Dahmen S., 2003, THESIS
[8]  
Diamond F., 2005, A first course in modular forms, DOI DOI 10.1007/978-0-387-27226-9
[9]   ZEROS OF THE EISENSTEIN SERIES E2 [J].
El Basraoui, Abdelkrim ;
Sebbar, Abdellah .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (07) :2289-2299
[10]  
Eremenko A., 2016, Arnold Math. J., V2, P463