Feeding by raphidophytes on the cyanobacterium Synechococcus sp.

被引:36
|
作者
Jeong, Hae Jin [1 ]
Seong, Kyeong Ah [2 ]
Kang, Nam Seon [1 ]
Du Yoo, Yeong [1 ]
Nam, Seung Won [3 ]
Park, Jae Yeon [4 ]
Shin, Woongghi [5 ]
Glibert, Patricia M. [6 ]
Johns, Desmond [6 ]
机构
[1] Seoul Natl Univ, Sch Earth & Environm Sci, Coll Nat Sci, Seoul 151747, South Korea
[2] Kunsan Natl Univ, Saemankeum Environm Res Ctr, Kunsan 573701, South Korea
[3] Korea Basic Sci Inst, Div Electron Microscop Res, Taejon 305333, South Korea
[4] Adv Inst Convergence Technol, Environm Energy Resource Inst, Suwon 443270, South Korea
[5] Chungnam Natl Univ, Dept Biol, Taejon 305764, South Korea
[6] Univ Maryland, Ctr Environm Sci, Horn Point Lab, Cambridge, MD 21613 USA
关键词
Chattonella spp; Fibrocapsa japonica; Graze; Heterosigma akashiwo; Harmful algal bloom; HAB; Ingestion; Red tide; HETEROSIGMA-AKASHIWO; GRAZING IMPACT; PREY CONCENTRATION; RED TIDES; PHYTOPLANKTON; GROWTH; COASTAL; OCEAN; ALGA; MIXOTROPHY;
D O I
10.3354/ame01354
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
We investigated feeding by the raphidophytes Chattonella ovata, C. subsalsa, Fibrocapsa japonica, and Heterosigma akashiwo on the cyanobacterium. Synechococcus sp. To explore whether each species is able to feed on Synechococcus sp., we carefully observed inside target grazer cells using an epifluorescence microscope and tranbsmission electron microscope (TEM). We also explored the feeding behaviors of C. ovata and H. akashiwo on Synechococcus using high-resolution video microscopy. In addition, we measured ingestion rates of C. ovata, C. subsalsa and H. akashiwo on Synechococcus sp. as a function of prey concentration. We calculated grazing coefficients by combining the field data on abundances of H. akashiwo and co-occurring Synechococcus spp. with laboratory data on ingestion rates. Both C. ovata and H. akashiwo were able to ingest single Synechococcus cells. However, neither TEM nor video microscopy showed any Synechococcus cells inside or ingested by F japonica, One to two ingested Synechococcus cells inside the protoplasm of F japonica cells were very rarely observed. C. ovata and H. akashiwo engulfed a single Synechococcus cell captured by the mucus excreted from mucocysts. The ingestion rates of C. ovata, C. subsalsa, or H. akashiwo on Synechococcus increased continuously with increasing prey concentration at prey concentrations ! 4 x 10(6) to 5.5 x 10(6) cells ml(-1). At a given prey concentration, the highest ingestion rates of the raphidophytes on Synechococcus were 18.6 cells raphidophyte(-1) h(-1) for C. ovata, 20.5 cells raphidophyte(-1) h(-1) for C. subsalsa, and 3.9 cells raphidophyte(-1) h(-1) for H. akashiwo. The calculated grazing coefficients attributable to H. akashiwo on co-occurring Synechococcus spp. were up to 1.24 d(-1). The results of the present study suggest that raphidophytes sometimes have a considerable grazing impact on populations of Synechococcus.
引用
收藏
页码:181 / 195
页数:15
相关论文
共 50 条
  • [1] Characterization of zinc stress response in Cyanobacterium Synechococcus sp. IU 625
    Newby, Robert, Jr.
    Lee, Lee H.
    Perez, Jose L.
    Tao, Xin
    Chu, Tinchun
    AQUATIC TOXICOLOGY, 2017, 186 : 159 - 170
  • [2] Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus
    Jeong, HJ
    Park, JY
    Nho, JH
    Park, MO
    Ha, JH
    Seong, KA
    Jeng, C
    Seong, CN
    Lee, KY
    Yih, WH
    AQUATIC MICROBIAL ECOLOGY, 2005, 41 (02) : 131 - 143
  • [3] Influence of salinity on the growth and biochemical composition of the cyanobacterium Synechococcus sp.
    Rosales, N
    Ortega, J
    Mora, R
    Morales, E
    CIENCIAS MARINAS, 2005, 31 (02) : 349 - 355
  • [4] The role of surface layer proteins in the degradation of a photosynthetic prokaryote, the cyanobacterium Synechococcus sp.
    Tang, Tiantian
    Lee, Cindy
    MARINE CHEMISTRY, 2016, 186 : 33 - 45
  • [5] Development of a Biotechnology Platform for the Fast-Growing Cyanobacterium Synechococcus sp. PCC 11901
    Mills, Lauren A.
    Moreno-Cabezuelo, Jose Angel
    Wlodarczyk, Artur
    Victoria, Angelo J.
    Mejias, Rebeca
    Nenninger, Anja
    Moxon, Simon
    Bombelli, Paolo
    Selao, Tiago T.
    McCormick, Alistair J.
    Lea-Smith, David J.
    BIOMOLECULES, 2022, 12 (07)
  • [6] Feeding characteristics of a golden alga (Poterioochromonas sp.) grazing on toxic cyanobacterium Microcystis aeruginosa
    Zhang, Xue
    Hu, Hong-Ying
    Men, Yu-jie
    Yang, Jia
    Christoffersen, Kirsten
    WATER RESEARCH, 2009, 43 (12) : 2953 - 2960
  • [7] Ingestion of the unicellular cyanobacterium Synechococcus by the mixotrophic red tide ciliate Mesodinium rubrum
    Yoo, Yeong Du
    Seong, Kyeong Ah
    Myung, Geumog
    Kim, Hyung Seop
    Jeong, Hae Jin
    Palenik, Brian
    Yih, Wonho
    ALGAE, 2015, 30 (04) : 281 - 290
  • [8] Molecular mechanism of a coastal cyanobacterium Synechococcus sp. PCC 7002 adapting to changing phosphate concentrations
    Sun, Qiao-Wei
    Gao, Yu
    Wang, Jordan
    Fu, Fei-xue
    Yong, Cheng-Wen
    Li, Shuang-Qing
    Huang, Hai-Long
    Chen, Wei-Zhong
    Wang, Xin-Wei
    Jiang, Hai-Bo
    MARINE LIFE SCIENCE & TECHNOLOGY, 2024, 6 (03) : 562 - 575
  • [9] Microbiota associated with the large-scale outdoor cultivation of the cyanobacterium Synechococcus sp. PCC 7002
    Davies, Fiona K.
    Fricker, Ashwana D.
    Robins, Melissa M.
    Dempster, Thomas A.
    McGowen, John
    Charania, Moiz
    Beliaev, Alexander S.
    Lindemann, Stephen R.
    Posewitz, Matthew C.
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2021, 58
  • [10] CHARACTERIZATION OF A FUNCTIONAL VANADIUM-DEPENDENT BROMOPEROXIDASE IN THE MARINE CYANOBACTERIUM SYNECHOCOCCUS SP. CC9311
    Johnson, Todd L.
    Palenik, Brian
    Brahamsha, Bianca
    JOURNAL OF PHYCOLOGY, 2011, 47 (04) : 792 - 801