Prediction of COVID-19 Hospital Length of Stay and Risk of Death Using Artificial Intelligence-Based Modeling

被引:24
作者
Mahboub, Bassam [1 ]
Bataineh, Mohammad T. Al [1 ,2 ]
Alshraideh, Hussam [3 ,4 ]
Hamoudi, Rifat [1 ,2 ,5 ]
Salameh, Laila [2 ]
Shamayleh, Abdulrahim [3 ]
机构
[1] Univ Sharjah, Coll Med, Clin Sci Dept, Sharjah, U Arab Emirates
[2] Univ Sharjah, Sharjah Inst Med Res, Sharjah, U Arab Emirates
[3] Amer Univ Sharjah, Ind Engn Dept, Sharjah, U Arab Emirates
[4] Jordan Univ Sci & Technol, Ind Engn Dept, Irbid, Jordan
[5] UCL, Div Surg & Intervent Sci, London, England
关键词
artificial intelligence; COVID-19; length of stay; predictive analytics; risk of death;
D O I
10.3389/fmed.2021.592336
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious virus with overwhelming demand on healthcare systems, which require advanced predictive analytics to strategize COVID-19 management in a more effective and efficient manner. We analyzed clinical data of 2017 COVID-19 cases reported in the Dubai health authority and developed predictive models to predict the patient's length of hospital stay and risk of death. A decision tree (DT) model to predict COVID-19 length of stay was developed based on patient clinical information. The model showed very good performance with a coefficient of determination R-2 of 49.8% and a median absolute deviation of 2.85 days. Furthermore, another DT-based model was constructed to predict COVID-19 risk of death. The model showed excellent performance with sensitivity and specificity of 96.5 and 87.8%, respectively, and overall prediction accuracy of 96%. Further validation using unsupervised learning methods showed similar separation patterns, and a receiver operator characteristic approach suggested stable and robust DT model performance. The results show that a high risk of death of 78.2% is indicated for intubated COVID-19 patients who have not used anticoagulant medications. Fortunately, intubated patients who are using anticoagulant and dexamethasone medications with an international normalized ratio of <1.69 have zero risk of death from COVID-19. In conclusion, we constructed artificial intelligence-based models to accurately predict the length of hospital stay and risk of death in COVID-19 cases. These smart models will arm physicians on the front line to enhance management strategies to save lives.
引用
收藏
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 2020, THROMB RES
[2]  
Cheng YC, 2020, KIDNEY INT, V97, P829, DOI 10.1016/j.kint.2020.03.005
[3]   Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study [J].
Cummings, Matthew J. ;
Baldwin, Matthew R. ;
Abrams, Darryl ;
Jacobson, Samuel D. ;
Meyer, Benjamin J. ;
Balough, Elizabeth M. ;
Aaron, Justin G. ;
Claassen, Jan ;
Rabbani, LeRoy E. ;
Hastie, Jonathan ;
Hochman, Beth R. ;
Salazar-Schicchi, John ;
Yip, Natalie H. ;
Brodie, Daniel ;
O'Donnell, Max R. .
LANCET, 2020, 395 (10239) :1763-1770
[4]  
Hastie T., 2001, The Elements of Statistical learning: Data Mining, Inference, and Prediction, P41, DOI [DOI 10.1007/978, 10.1007/978-0-387-21606-5]_3]
[5]   Unbiased recursive partitioning: A conditional inference framework [J].
Hothorn, Torsten ;
Hornik, Kurt ;
Zeileis, Achim .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (03) :651-674
[6]   Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J].
Huang, Chaolin ;
Wang, Yeming ;
Li, Xingwang ;
Ren, Lili ;
Zhao, Jianping ;
Hu, Yi ;
Zhang, Li ;
Fan, Guohui ;
Xu, Jiuyang ;
Gu, Xiaoying ;
Cheng, Zhenshun ;
Yu, Ting ;
Xia, Jiaan ;
Wei, Yuan ;
Wu, Wenjuan ;
Xie, Xuelei ;
Yin, Wen ;
Li, Hui ;
Liu, Min ;
Xiao, Yan ;
Gao, Hong ;
Guo, Li ;
Xie, Jungang ;
Wang, Guangfa ;
Jiang, Rongmeng ;
Gao, Zhancheng ;
Jin, Qi ;
Wang, Jianwei ;
Cao, Bin .
LANCET, 2020, 395 (10223) :497-506
[7]  
Ibolnuar N, 2019, ANN REHABIL MED-ARM, V43, P509
[8]   Obesity could shift severe COVID-19 disease to younger ages [J].
Kass, David A. ;
Duggal, Priya ;
Cingolani, Oscar .
LANCET, 2020, 395 (10236) :1544-1545
[9]   Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study [J].
Kuderer, Nicole M. ;
Choueiri, Toni K. ;
Shah, Dimpy P. ;
Shyr, Yu ;
Rubinstein, Samuel M. ;
Rivera, Donna R. ;
Shete, Sanjay ;
Hsu, Chih-Yuan ;
Desai, Aakash ;
Lopes, Gilberto de Lima, Jr. ;
Grivas, Petros ;
Painter, Corrie A. ;
Peters, Solange ;
Thompson, Michael A. ;
Bakouny, Ziad ;
Batist, Gerald ;
Bekaii-Saab, Tanios ;
Bilen, Mehmet A. ;
Bouganim, Nathaniel ;
Larroya, Mateo Bover ;
Castellano, Daniel ;
Del Prete, Salvatore A. ;
Doroshow, Deborah B. ;
Egan, Pamela C. ;
Elkrief, Arielle ;
Farmakiotis, Dimitrios ;
Flora, Daniel ;
Galsky, Matthew D. ;
Glover, Michael J. ;
Griffiths, Elizabeth A. ;
Gulati, Anthony P. ;
Gupta, Shilpa ;
Hafez, Navid ;
Halfdanarson, Thorvardur R. ;
Hawley, Jessica E. ;
Hsu, Emily ;
Kasi, Anup ;
Khaki, Ali R. ;
Lemmon, Christopher A. ;
Lewis, Colleen ;
Logan, Barbara ;
Masters, Tyler ;
McKay, Rana R. ;
Mesa, Ruben A. ;
Morgans, Alicia K. ;
Mulcahy, Mary F. ;
Panagiotou, Orestis A. ;
Peddi, Prakash ;
Pennell, Nathan A. ;
Reynolds, Kerry .
LANCET, 2020, 395 (10241) :1907-1918
[10]   A review of modern technologies for tackling COVID-19 pandemic [J].
Kumar, Aishwarya ;
Gupta, Puneet Kumar ;
Srivastava, Ankita .
DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2020, 14 (04) :569-573