Daino: A High-level Framework for Parallel and Efficient AMR on GPUs

被引:0
|
作者
Wahib, Mohamed [1 ]
Maruyama, Naoya [1 ]
Aoki, Takayuki [2 ]
机构
[1] RIKEN, Adv Inst Computat Sci, JST, CREST, Kobe, Hyogo 6500047, Japan
[2] Tokyo Inst Technol, Meguro Ku, 2-12-1 Ookayama, Tokyo 6500047, Japan
来源
SC '16: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS | 2016年
关键词
Accelerator processing; Adaptive mesh refinement; Parallel programming; Performance analysis; ADAPTIVE-MESH-REFINEMENT;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Adaptive Mesh Refinement methods reduce computational requirements of problems by increasing resolution for only areas of interest. However, in practice, efficient AMR implementations are difficult considering that the mesh hierarchy management must be optimized for the underlying hardware. Architecture complexity of GPUs can render efficient AMR to be particularity challenging in GPU-accelerated supercomputers. This paper presents a compiler-based high-level framework that can automatically transform serial uniform mesh code annotated by the user into parallel adaptive mesh code optimized for GPU-accelerated supercomputers. We also present a method for empirical analysis of a uniform mesh to project an upper-bound on achievable speedup of a GPU-optimized AMR code. We show experimental results on three production applications. The speedups of code generated by our framework are comparable to hand-written AMR code while achieving good and weak scaling up to 1000 GPUs.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 50 条
  • [1] Efficient high-level parallel programming
    Botorog, GH
    Kuchen, H
    THEORETICAL COMPUTER SCIENCE, 1998, 196 (1-2) : 71 - 107
  • [2] EFFICIENT IMPLEMENTATION OF HIGH-LEVEL PARALLEL PROGRAMS
    BAGRODIA, R
    MATHUR, S
    SIGPLAN NOTICES, 1991, 26 (04): : 142 - 151
  • [3] An efficient framework for high-level power exploration
    Klein, Felipe
    Araujo, Guido
    Azevedo, Rodolfo
    Leao, Roberto
    dos Santos, Luiz C. V.
    2007 50TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 2007, : 852 - +
  • [4] Allen: A High-Level Trigger on GPUs for LHCb
    Aaij R.
    Albrecht J.
    Belous M.
    Billoir P.
    Boettcher T.
    Brea Rodríguez A.
    vom Bruch D.
    Cámpora Pérez D.H.
    Casais Vidal A.
    Craik D.C.
    Fernandez Declara P.
    Funke L.
    Gligorov V.V.
    Jashal B.
    Kazeev N.
    Martínez Santos D.
    Pisani F.
    Pliushchenko D.
    Popov S.
    Quagliani R.
    Rangel M.
    Reiss F.
    Sánchez Mayordomo C.
    Schwemmer R.
    Sokoloff M.
    Stevens H.
    Ustyuzhanin A.
    Vilasís Cardona X.
    Williams M.
    Computing and Software for Big Science, 2020, 4 (1)
  • [5] An Efficient Parallel Secure Machine Learning Framework on GPUs
    Zhang, Feng
    Chen, Zheng
    Zhang, Chenyang
    Zhou, Amelie Chi
    Zhai, Jidong
    Du, Xiaoyong
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (09) : 2262 - 2276
  • [6] synASM: A High-Level Synthesis Framework With Support for Parallel and Timed Constructs
    Sinha, Rohit
    Patel, Hiren D.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2012, 31 (10) : 1508 - 1521
  • [7] STLs for GPUs: Using High-Level Language Approaches
    Guerrero-Balaguera, Juan-David
    Condia, Josie E. Rodriguez
    Reorda, Matteo Sonza
    IEEE DESIGN & TEST, 2023, 40 (04) : 51 - 60
  • [8] ParSecureML: An Efficient Parallel Secure Machine Learning Framework on GPUs
    Chen, Zheng
    Zhang, Feng
    Zhou, Amelie Chi
    Zhai, Jidong
    Zhang, Chenyang
    Du, Xiaoyong
    PROCEEDINGS OF THE 49TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2020, 2020,
  • [9] High-Level Stream Parallelism Abstractions with SPar Targeting GPUs
    Rockenbach, Dinei A.
    Griebler, Dalvan
    Danelutto, Marco
    Fernandes, Luiz G.
    PARALLEL COMPUTING: TECHNOLOGY TRENDS, 2020, 36 : 543 - 552
  • [10] FastPara: a high-level declarative data-parallel programming framework on clusters
    Mao, Yong
    Gu, Yunhong
    Chen, Jia
    Grossman, Robert L.
    PROCEEDINGS OF THE 18TH IASTED INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING AND SYSTEMS, 2006, : 321 - +