Real and p-adic Picard-Vessiot fields

被引:9
作者
Crespo, Teresa [1 ]
Hajto, Zbigniew [2 ]
van der Put, Marius [3 ]
机构
[1] Univ Barcelona, Dept Algebra & Geometria, Gran Via Corts Catalanes, E-08007 Barcelona, Spain
[2] Jagiellonian Univ, Fac Math & Comp Sci, Ul Prof S Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Univ Groningen, Dept Math, POB 407, NL-9700 AK Groningen, Netherlands
关键词
11E10; 11R34; 12D15; 34M50;
D O I
10.1007/s00208-015-1272-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider differential modules over real and p-adic differential fields K such that its field of constants k is real closed (resp., p-adically closed). Using P. Deligne's work on Tannakian categories and a result of J.-P. Serre on Galois cohomology, a purely algebraic proof of the existence and unicity of real (resp., p-adic) Picard-Vessiot fields is obtained. The inverse problem for real forms of a semi-simple group is treated. Some examples illustrate the relations between differential modules, Picard-Vessiot fields and real forms of a linear algebraic group.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 12 条
[1]  
Buzzard K., 2013, FORMS REDUCTIVE ALGE
[2]  
Cassidy PJ, 2007, IRMA L MATH THE PHYS, V9, P113
[3]  
Deligne P., 1990, Birkhauser, V87, P111, DOI [10.1007/978-0-8176-4575-53, 10, DOI 10.1007/978-0-8176-4575-53]
[4]  
Deligne Pierre, 1982, Lecture Notes in Mathematics, V900, P101, DOI DOI 10.1007/978-3-540-38955
[5]  
Gille P., 2013, London Math. Soc. Lecture Note Ser, V405, P231
[6]   AN INTRODUCTION TO REAL ALGEBRA [J].
LAM, TY .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1984, 14 (04) :767-814
[7]   Connected linear groups as differential Galois groups [J].
Mitschi, C ;
Singer, MF .
JOURNAL OF ALGEBRA, 1996, 184 (01) :333-361
[8]  
PRESTEL A, 1984, LECT NOTES MATH, V1050, P1
[10]  
Serre J.-P., 1994, Lecture Notes in Mathematics, V5