Reconstruction of Subsurface Velocities From Satellite Observations Using Iterative Self-Organizing Maps

被引:62
作者
Chapman, Christopher [1 ]
Charantonis, Anastase Alexandre [2 ]
机构
[1] Univ Paris 06, LOCEAN IPSL, F-75005 Paris, France
[2] Univ Paris Saclay, CNRS, Telecom SudParis, SAMOVAR, F-91011 Evry, France
基金
美国国家科学基金会;
关键词
Oceans; remote sensing; self-organizing feature maps;
D O I
10.1109/LGRS.2017.2665603
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new method based on modified self-organizing maps is presented for the reconstruction of deep ocean current velocities from surface information provided by satellites. This method takes advantage of local correlations in the data-space to improve the accuracy of the reconstructed deep velocities. No assumptions regarding the structure of the water column, nor the underlying dynamics of the flow field, are made. Using satellite observations of surface velocity, sea-surface height and sea-surface temperature, as well as observations of the deep current velocity from autonomous Argo floats to train the map, we are able to reconstruct realistic high-resolution velocity fields at a depth of 1000 m. Validation reveals promising results, with a speed root mean squared error of similar to 2.8 cm.s(-1), more than a factor of two smaller than competing methods, and direction errors consistently smaller than 30 degrees. Finally, we discuss the merits and shortcomings of this methodology.
引用
收藏
页码:617 / 620
页数:4
相关论文
共 13 条
  • [1] Retrieving the evolution of vertical profiles of Chlorophyll-a from satellite observations using Hidden Markov Models and Self-Organizing Topological Maps
    Charantonis, A. A.
    Badran, F.
    Thiria, S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 163 : 229 - 239
  • [2] Completion of a sparse GLIDER database using multi-iterative Self-Organizing Maps (ITCOMP SOM).
    Charantonis, Anastase Alexandre
    Testor, Pierre
    Mortier, Laurent
    D'Ortenzio, Fabrizio
    Thiria, Sylvie
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2198 - 2206
  • [3] Three-dimensional reconstruction of oceanic mesoscale currents from surface information
    Isern-Fontanet, Jordi
    Lapeyre, Guillaume
    Klein, Patrice
    Chapron, Bertrand
    Hecht, Matthew W.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2008, 113 (C9)
  • [4] Upper ocean flow statistics estimated from superresolved sea-surface temperature images
    Keating, Shane R.
    Smith, K. Shafer
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (02) : 1197 - 1214
  • [5] Kohonen T., 2001, SPRINGER SERIES INFO, V30, P1
  • [6] Current patterns on the West Florida Shelf from joint self-organizing map analyses of HF radar and ADCP data
    Liu, Yonggang
    Weisberg, Robert H.
    Shay, Lynn K.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2007, 24 (04) : 702 - 712
  • [7] Performance evaluation of the self-organizing map for feature extraction
    Liu, Yonggang
    Weisberg, Robert H.
    Mooers, Christopher N. K.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2006, 111 (C5)
  • [8] Estimating the Four-Dimensional Structure of the Southern Ocean Using Satellite Altimetry
    Meijers, A. J. S.
    Bindoff, N. L.
    Rintoul, S. R.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2011, 28 (04) : 548 - 568
  • [9] Recent advances in observing mesoscale ocean dynamics with satellite altimetry
    Morrow, Rosemary
    Le Traon, Pierre-Yves
    [J]. ADVANCES IN SPACE RESEARCH, 2012, 50 (08) : 1062 - 1076
  • [10] ANDRO: An Argo-Based Deep Displacement Dataset
    Ollitrault, Michel
    Rannou, Jean-Philippe
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2013, 30 (04) : 759 - 788