Euler Type Integral Operator Involving k-Mittag-Leffler Function

被引:1
|
作者
Khan, Waseem Ahmad [1 ]
Nisar, Kottakkaran Sooppy [2 ]
Ahmad, Moin [1 ]
机构
[1] Integral Univ, Dept Math, Lucknow, Uttar Pradesh, India
[2] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci Wadi Al Dawaser, Dept Math, Al Kharj, Saudi Arabia
来源
关键词
Euler type integrals; Extended k-beta function; Generalized k-Mittag-Leffler function; Generalized k-Wright function;
D O I
10.5269/bspm.v38i5.36713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a Euler type integral operator involving k-Mittag-Leffler function defined by Gupta and Parihar [7]. Furthermore, some special cases are also taken into consideration.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 50 条
  • [1] Fractional calculus operator with generalize k-Mittag-Leffler function
    Singh, Yudhveer
    Dubey, Ravi Shanker
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (02) : 545 - 553
  • [2] EULER TYPE INTEGRAL INVOLVING GENERALIZED MITTAG-LEFFLER FUNCTION
    Ahmed, Shakeel
    Khan, Mumtaz Ahmad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 29 (03): : 479 - 487
  • [3] SOME INTEGRAL TRANSFORMS OF THE GENERALIZED k-MITTAG-LEFFLER FUNCTION
    Qi, Feng
    Nisar, Kottakkaran Sooppy
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2019, 106 (120): : 125 - 133
  • [4] On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function
    P. Agarwal
    M. Chand
    D. Baleanu
    D. O’Regan
    Shilpi Jain
    Advances in Difference Equations, 2018
  • [5] An Integral representation of generalized k-Mittag-Leffler function of the type GEk,α,β,δ.pγ,q(z)
    Joshi, Sunil
    Mittal, Ekta
    2018 4TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2018), 2018, : 103 - 105
  • [6] Generalized k-Mittag-Leffler function and its composition with pathway integral operators
    Nisar, K. S.
    Purohit, S. D.
    Abouzaid, M. S.
    Al Qurashi, M.
    Baleanu, D.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3519 - 3526
  • [7] ON A RECURRENCE RELATION OF K-MITTAG-LEFFLER FUNCTION
    Dhakar, Virendra Singh
    Sharma, Kishan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (04): : 851 - 856
  • [8] On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function
    Agarwal, P.
    Chand, M.
    Baleanu, D.
    O'Regan, D.
    Jain, Shilpi
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [9] FRACTIONAL CALCULUS OF GENERALIZED K-MITTAG-LEFFLER FUNCTION
    Daiya, Jitendra
    Ram, Jeta
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2016, 15 (1-2): : 89 - 96
  • [10] GENERALIZED k-MITTAG-LEFFLER FUNCTION AND ITS PROPERTIES
    Nathwani, Bharti V.
    Savalia, Rajesh V.
    Rodrigues, Cynthia V.
    Gharat, Harshal s.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (05) : 1427 - 1446