The Hitting Times of Random Walks on Bicyclic Graphs

被引:5
作者
Zhu, Xiaomin [1 ]
Zhang, Xiao-Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, SHL MAC, MOE LSC, Sch Math Sci, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Hitting time; Bicyclic graph; Random walk; COVER COST; RESISTANCE; INVARIANTS;
D O I
10.1007/s00373-021-02360-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let HG(x, y) be the expected hitting time from vertex x to vertex y for the first time on a simple connected graph G and phi(G) := max{H-G(x, y) : x, y is an element of V(G)} be called the hitting time of G. In this paper, sharp upper and lower bounds for phi(G) among all n-vertex bicyclic graphs are presented and the extremal graphs are determined.
引用
收藏
页码:2365 / 2386
页数:22
相关论文
共 30 条
[2]  
[Anonymous], 1991, J. Theoret. Probab
[3]  
Blackburn JA., 2001, BRIDGE CIRCUITS MODE, DOI 10.1007/978-1-4613-0103-5
[4]  
Bollobas B., 1998, Modern graph theory
[5]   EXTREMAL COVER TIMES FOR RANDOM-WALKS ON TREES [J].
BRIGHTWELL, G ;
WINKLER, P .
JOURNAL OF GRAPH THEORY, 1990, 14 (05) :547-554
[6]  
BRIGHTWELL G., 1990, Random Structures & Algorithms, V1, P263, DOI 10.1002/rsa.3240010303
[7]  
Chandra AK, 1997, COMPUT COMPLEX, V6, P312
[8]   Chung-Yau Invariants and Graphs with Symmetric Hitting Times [J].
Chang, Xiao ;
Xu, Hao .
JOURNAL OF GRAPH THEORY, 2017, 85 (03) :691-705
[9]   Hitting times for random walks on subdivision and triangulation graphs [J].
Chen, Haiyan .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (01) :117-130
[10]   The expected hitting times for graphs with cutpoints [J].
Chen, HY ;
Zhang, FJ .
STATISTICS & PROBABILITY LETTERS, 2004, 66 (01) :9-17