Resistance training attenuates salt overload-induced cardiac remodeling and diastolic dysfunction in normotensive rats

被引:0
|
作者
Barretti, D. L. M. [1 ]
Melo, S. F. S. [1 ,2 ]
Oliveira, E. M. [1 ]
Barauna, V. G. [2 ]
机构
[1] Univ Sao Paulo, Escola Educ Fis & Esportes, Lab Bioquim & Biol Mol Exercicio, Sao Paulo, SP, Brazil
[2] Univ Fed Espirito Santo, Ctr Ciencias Saude, Lab Fisiol Mol, Vitoria, ES, Brazil
关键词
Diastolic dysfunction; Interstitial collagen; Resistance training; Salt overload; REPERFUSION-INDUCED INJURY; HYPERTROPHY; HEART; FIBROSIS; EXERCISE; MODEL; ALDOSTERONE; BETA;
D O I
10.1590/1414-431X20176146
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Elevated salt intake induces changes in the extracellular matrix collagen, leading to myocardial stiffness and impaired relaxation. Resistance training (RT) has been used as a remarkably successful strategy in the treatment of heart disease. Therefore, the aim of this study was to investigate the effects of RT on preventing pathological adaptation of the left ventricle (LV) induced by salt overload. Male Wistar rats (10 weeks old) were distributed into four groups (n=8/group): control (CO), control+1% salt (CO+SALT), RT and RT+1% salt (RT+SALT). The RT protocol consisted of 4 x 12 bouts of squat training, 5/week for 8 weeks, with 80% of one repetition maximum (1RM). Echocardiographs were analyzed and interstitial collagen volume fraction (CVF) was determined in the LV. The 1RM tests in the RT and RT+SALT groups increased 145 and 137%, respectively, compared with the test performed before the training program. LV weight-to-body weight ratio and LV weight-to-tibia length ratio were greater in the RT and RT+SALT groups, respectively, compared with the CO group. Although there was no difference in the systolic function between groups, diastolic function decreased 25% in the CO+SALT group compared with the CO group measured by E/A wave ratio. RT partially prevented this decrease in diastolic function compared with the CO+SALT group. A 1% salt overload increased CVF more than 2.4-fold in the CO+SALT group compared with the CO group and RT prevented this increase. In conclusion, RT prevented interstitial collagen deposition in LV rats subjected to 1% NaCl and attenuated diastolic dysfunction induced by salt overload independent of alterations in blood pressure.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis
    Xu, Si-Chi
    Ma, Zhen-Guo
    Wei, Wen-Ying
    Yuan, Yu-Pei
    Tang, Qi-Zhu
    PPAR RESEARCH, 2017, 2017
  • [32] Diacylglycerol kinase ζ attenuates pressure overload-induced cardiac hypertrophy
    Harada, Mutsuo
    Takeishi, Yasuchika
    Arimoto, Takanori
    Niizeki, Takeshi
    Kitahara, Tatsuro
    Goto, Kaoru
    Walsh, Richard A.
    Kubota, Isao
    CIRCULATION JOURNAL, 2007, 71 (02) : 276 - 282
  • [33] Activation of PPARγ by rosiglitazone inhibits pressure overload-induced cardiac hypertrophy and improves diastolic dysfunction in mice
    Gong, Kaizheng
    Xing, Dongqi
    Li, Peng
    Yang, Qinglin
    Oparil, Suzanne
    Chen, Yiu-Fai
    FASEB JOURNAL, 2011, 25
  • [34] Isolevuglandin scavenger attenuates pressure overload-induced cardiac oxidative stress, cardiac hypertrophy, heart failure and lung remodeling
    Shang, Linlin
    Weng, Xinyu
    Wang, Dongzhi
    Yue, Wenhui
    Mernaugh, Ray
    Amarnath, Venkataraman
    Weir, E. Kenneth
    Dudley, Samuel C.
    Xu, Yawei
    Hou, Mingxiao
    Chen, Yingjie
    FREE RADICAL BIOLOGY AND MEDICINE, 2019, 141 : 291 - 298
  • [35] Renal denervation attenuates pressure overload-induced cardiac remodelling in rats with biphasic regulation of autophagy
    Huo, Jun-Yu
    Jiang, Wan-Ying
    Geng, Jie
    Chen, Chu
    Zhu, Lin
    Chen, Ran
    Ge, Tian-Tian
    Chang, Qing
    Jiang, Zhi-Xin
    Shan, Qi-Jun
    ACTA PHYSIOLOGICA, 2019, 226 (04)
  • [36] Low-carbohydrate/high-fat diet attenuates pressure overload-induced ventricular remodeling and dysfunction
    Duda, Monika K.
    O'Shea, Karen M.
    Lei, Biao
    Barrows, Brian R.
    Azimzadeh, Agnes M.
    Mcelfresh, Tracy E.
    Hoit, Brian D.
    Kop, Willem J.
    Stanley, William C.
    JOURNAL OF CARDIAC FAILURE, 2008, 14 (04) : 327 - 335
  • [37] Resistance Training Attenuates Cancer Cachexia-induced Cardiac Remodeling
    Baumel, Scott
    Bredahl, Eric
    MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2020, 52 (07) : 335 - 335
  • [38] Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling
    Liu, Xin
    Shi, Guo-Ping
    Guo, Junli
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [39] Dickkopf-3 attenuates pressure overload-induced cardiac remodelling
    Zhang, Yan
    Liu, Yu
    Zhu, Xue-Hai
    Zhang, Xiao-Dong
    Jiang, Ding-Sheng
    Bian, Zhou-Yan
    Zhang, Xiao-Fei
    Chen, Ke
    Wei, Xiang
    Gao, Lu
    Zhu, Li-Hua
    Yang, Qinglin
    Fan, Guo-Chang
    Lau, Wayne B.
    Ma, Xinliang
    Li, Hongliang
    CARDIOVASCULAR RESEARCH, 2014, 102 (01) : 35 - 45
  • [40] Exercise preconditioning attenuates pressure overload-induced pathological cardiac hypertrophy
    Xu, Tongyi
    Tang, Hao
    Zhang, Ben
    Cai, Chengliang
    Liu, Xiaohong
    Han, Qingqi
    Zou, Liangjian
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2015, 8 (01): : 530 - 540