Resistance training attenuates salt overload-induced cardiac remodeling and diastolic dysfunction in normotensive rats

被引:0
|
作者
Barretti, D. L. M. [1 ]
Melo, S. F. S. [1 ,2 ]
Oliveira, E. M. [1 ]
Barauna, V. G. [2 ]
机构
[1] Univ Sao Paulo, Escola Educ Fis & Esportes, Lab Bioquim & Biol Mol Exercicio, Sao Paulo, SP, Brazil
[2] Univ Fed Espirito Santo, Ctr Ciencias Saude, Lab Fisiol Mol, Vitoria, ES, Brazil
关键词
Diastolic dysfunction; Interstitial collagen; Resistance training; Salt overload; REPERFUSION-INDUCED INJURY; HYPERTROPHY; HEART; FIBROSIS; EXERCISE; MODEL; ALDOSTERONE; BETA;
D O I
10.1590/1414-431X20176146
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Elevated salt intake induces changes in the extracellular matrix collagen, leading to myocardial stiffness and impaired relaxation. Resistance training (RT) has been used as a remarkably successful strategy in the treatment of heart disease. Therefore, the aim of this study was to investigate the effects of RT on preventing pathological adaptation of the left ventricle (LV) induced by salt overload. Male Wistar rats (10 weeks old) were distributed into four groups (n=8/group): control (CO), control+1% salt (CO+SALT), RT and RT+1% salt (RT+SALT). The RT protocol consisted of 4 x 12 bouts of squat training, 5/week for 8 weeks, with 80% of one repetition maximum (1RM). Echocardiographs were analyzed and interstitial collagen volume fraction (CVF) was determined in the LV. The 1RM tests in the RT and RT+SALT groups increased 145 and 137%, respectively, compared with the test performed before the training program. LV weight-to-body weight ratio and LV weight-to-tibia length ratio were greater in the RT and RT+SALT groups, respectively, compared with the CO group. Although there was no difference in the systolic function between groups, diastolic function decreased 25% in the CO+SALT group compared with the CO group measured by E/A wave ratio. RT partially prevented this decrease in diastolic function compared with the CO+SALT group. A 1% salt overload increased CVF more than 2.4-fold in the CO+SALT group compared with the CO group and RT prevented this increase. In conclusion, RT prevented interstitial collagen deposition in LV rats subjected to 1% NaCl and attenuated diastolic dysfunction induced by salt overload independent of alterations in blood pressure.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload
    Zhang, Ning
    Wei, Wen-Ying
    Liao, Hai-Han
    Yang, Zheng
    Hu, Can
    Wang, Sha-sha
    Deng, Wei
    Tang, Qi-Zhu
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2018, 96 (12): : 1345 - 1357
  • [22] Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways
    Zhou, Heng
    Yang, He-Xin
    Yuan, Yuan
    Deng, Wei
    Zhang, Jie-Yu
    Bian, Zhou-Yan
    Zong, Jing
    Dai, Jia
    Tang, Qi-Zhu
    JOURNAL OF MOLECULAR HISTOLOGY, 2013, 44 (03) : 357 - 367
  • [23] Direct thrombin inhibition with dabigatran attenuates pressure overload-induced cardiac fibrosis and dysfunction in mice
    Dong, Anping
    Mueller, Paul
    Yang, Fanmuyi
    Yang, Liping
    Morris, Andrew
    Smyth, Susan S.
    THROMBOSIS RESEARCH, 2017, 159 : 58 - 64
  • [24] Critical roles of macrophages in pressure overload-induced cardiac remodeling
    Yang, Dan
    Liu, Han-Qing
    Liu, Fang-Yuan
    Tang, Nan
    Guo, Zhen
    Ma, Shu-Qing
    An, Peng
    Wang, Ming-Yu
    Wu, Hai-Ming
    Yang, Zheng
    Fan, Di
    Tang, Qi-Zhu
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2021, 99 (01): : 33 - 46
  • [25] Cardamonin Alleviates Pressure Overload-induced Cardiac Remodeling and Dysfunction Through Inhibition of Oxidative Stress
    Li, Wei
    Wu, Xiangqi
    Li, Minghui
    Wang, Zhimei
    Li, Bing
    Qu, Xinliang
    Chen, Shaoliang
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2016, 68 (06) : 441 - 451
  • [26] Oleanolic acid alleviated pressure overload-induced cardiac remodeling
    Hai-Han Liao
    Nan Zhang
    Hong Feng
    Ning Zhang
    Zhen-Guo Ma
    Zheng Yang
    Yuan Yuan
    Zhou-Yan Bian
    Qi-Zhu Tang
    Molecular and Cellular Biochemistry, 2015, 409 : 145 - 154
  • [27] Tauroursodeoxycholic acid (TUDCA) attenuates pressure overload-induced cardiac remodeling by reducing endoplasmic reticulum stress
    Rani, Shilpa
    Sreenivasaiah, Pradeep Kumar
    Kim, Jin Ock
    Lee, Mi Young
    Kang, Wan Seok
    Kim, Yong Sook
    Ahn, Youngkeun
    Park, Woo Jin
    Cho, Chunghee
    Kim, Do Han
    PLOS ONE, 2017, 12 (04):
  • [28] Diacylglycerol kinase ζ attenuates pressure overload-induced cardiac hypertrophy
    Harada, Mutsuo
    Takeishi, Yasuchika
    Arimoto, Takanori
    Niizeki, Takeshi
    Kitahara, Tatsuro
    Goto, Kaoru
    Walsh, Richard A.
    Kubota, Isao
    CIRCULATION JOURNAL, 2007, 71 (02) : 276 - 282
  • [29] Hyperoside Protects Against Pressure Overload-Induced Cardiac Remodeling via the AKT Signaling Pathway
    Wang, Xiaofang
    Liu, Yuan
    Xiao, Lili
    Li, Ling
    Zhao, Xiaoyan
    Yang, Lulu
    Chen, Ning
    Gao, Lu
    Zhang, Jinying
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 51 (02) : 827 - 841
  • [30] Isolevuglandin scavenger attenuates pressure overload-induced cardiac oxidative stress, cardiac hypertrophy, heart failure and lung remodeling
    Shang, Linlin
    Weng, Xinyu
    Wang, Dongzhi
    Yue, Wenhui
    Mernaugh, Ray
    Amarnath, Venkataraman
    Weir, E. Kenneth
    Dudley, Samuel C.
    Xu, Yawei
    Hou, Mingxiao
    Chen, Yingjie
    FREE RADICAL BIOLOGY AND MEDICINE, 2019, 141 : 291 - 298