Divertor power loads and scrape off layer width in the large aspect ratio full tungsten tokamak WEST

被引:26
作者
Gaspar, J. [1 ]
Corre, Y. [2 ]
Fedorczak, N. [2 ]
Gunn, J. P. [2 ]
Bourdelle, C. [2 ]
Brezinsek, S. [3 ]
Bucalossi, J. [2 ]
Chanet, N. [2 ]
Dejarnac, R. [4 ]
Firdaouss, M. [2 ]
Gardarein, J-L [1 ]
Laffont, G. [5 ]
Loarer, T. [2 ]
Pocheau, C. [2 ]
Tsitrone, E. [2 ]
机构
[1] Aix Marseille Univ, CNRS, IUSTI, Marseille, France
[2] CEA, Inst Res Fus Magnet Confinement, F-13108 St Paul Les Durance, France
[3] FZ Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany
[4] Czech Acad Sci, Inst Plasma Phys, Prague, Czech Republic
[5] CEA, LIST, F-91191 Gif Sur Yvette, France
关键词
divertor; diagnostics comparison; thermocouples; infrared; Langmuir probes; heat load pattern;
D O I
10.1088/1741-4326/ac1803
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
WEST is a full W tokamak with an extensive set of diagnostics for heat load measurements especially in the lower divertor. It is composed by infrared thermography, thermal measurement with thermocouples and fibre Bragg grating embedded few mm below the surface and flush mounted Langmuir probes. A large database including different magnetic equilibrium and input power is investigated to compare the heat load pattern (location, amplitude of the peak and heat flux decay length) on the inner and outer strike point regions: from the first ohmic diverted plasma (obtained during the second experimental campaign C2 in 2018) up to the high power (8 MW total injected) and high energy (up to 90 MJ injected energy in lower single null configuration) experiments performed in the last experimental campaign (C4 in 2019). Concerning the peak location, a good agreement (<1 cm) is obtained between thermal inversions and flush-mounted LP measurements. The peak heat flux from the whole set of diagnostics is in good agreement and mainly in the +/- 20% range, while the heat flux decay length reported on the target shows significant discrepancy between diagnostics and location in the machine (+/- 40% range). Despite such discrepancy, heat flux decay length at target is found to scale mainly with the magnetic flux expansion through the variation of the X-point height, as expected. The improved plasma performances achieved during C4 enabled to reach significant heat load in the divertor, up to 6 MW m(-2) with 4 MW of additional heating power showing the capability to reach the ITER relevant heat load (10 MW m(-2) steady state) with about 7 MW of additional power in L-mode discharge. The heat load distribution is clearly asymmetric with a 3/4 and 1/4 distribution on the outer and inner strike point region respectively for the parallel heat flux.
引用
收藏
页数:9
相关论文
共 21 条
[11]   Heat flux depositions on the WEST divertor and first wall components [J].
Firdaouss, M. ;
Batal, T. ;
Bucalossi, J. ;
Languille, P. ;
Nardon, E. ;
Richou, M. .
FUSION ENGINEERING AND DESIGN, 2015, 98-99 :1294-1298
[12]   In-situ assessment of the emissivity of tungsten plasma facing components of the WEST tokamak [J].
Gaspar, J. ;
Aumeunier, M-H ;
Le Bohec, M. ;
Rigollet, F. ;
Brezinsek, S. ;
Corre, Y. ;
Courtois, X. ;
Dejarnac, R. ;
Diez, M. ;
Dubus, L. ;
Fedorczak, N. ;
Houry, M. ;
Moncada, V ;
Moreau, P. ;
Pocheau, C. ;
Talatizi, C. ;
Tsitrone, E. .
NUCLEAR MATERIALS AND ENERGY, 2020, 25
[13]   Emissivity measurement of tungsten plasma facing components of the WEST tokamak [J].
Gaspar, J. ;
Pocheau, C. ;
Corre, Y. ;
Ehret, N. ;
Guilhem, D. ;
Houry, M. ;
Loarer, T. ;
Loewenhoff, Th ;
Martin, C. ;
Pardanaud, C. ;
Pintsuk, G. ;
Richou, M. ;
Rigollet, F. ;
Roche, H. ;
Sepulcre, G. ;
Wirtz, M. .
FUSION ENGINEERING AND DESIGN, 2019, 149
[14]   First heat flux estimation in the lower divertor of WEST with embedded thermal measurements [J].
Gaspar, J. ;
Corre, Y. ;
Firdaouss, M. ;
Gardarein, J. L. ;
Gerardin, J. ;
Gunn, J. P. ;
Houry, M. ;
Laffont, G. ;
Loarer, T. ;
Missirlian, M. ;
Morales, J. ;
Moreau, P. ;
Pocheau, C. ;
Tsitrone, E. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :757-760
[15]  
Gaspar J., 2016, J PHYS C SER, V745, DOI [10.1088/1742-6596/745/1/011002, DOI 10.1088/1742-6596/745/1/011002]
[16]   Energy balance in JET [J].
Matthews, G. F. ;
Bunting, P. ;
Devaux, S. ;
Drewelow, P. ;
Guillemaut, C. ;
King, D. B. ;
Lerche, E. ;
Silburn, S. ;
Szepesi, G. ;
Riccardo, V. ;
Thompson, V. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :227-233
[17]   Divertor power load studies for attached L-mode single-null plasmas in TCV [J].
Maurizio, R. ;
Elmore, S. ;
Fedorczak, N. ;
Gallo, A. ;
Reimerdes, H. ;
Labit, B. ;
Theiler, C. ;
Tsui, C. K. ;
Vijvers, W. A. J. .
NUCLEAR FUSION, 2018, 58 (01)
[18]   The WEST project: Current status of the ITER-like tungsten divertor [J].
Missirlian, M. ;
Bucalossi, J. ;
Corre, Y. ;
Ferlay, F. ;
Firdaouss, M. ;
Garin, P. ;
Grosman, A. ;
Guilhem, D. ;
Gunn, J. ;
Languille, P. ;
Lipa, M. ;
Richou, M. ;
Tsitrone, E. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) :1048-1053
[19]   Edge and divertor physics with reversed toroidal field in JET [J].
Pitts, RA ;
Andrew, P ;
Bonnin, X ;
Chankin, AV ;
Corre, Y ;
Corrigan, G ;
Coster, D ;
Duran, I ;
Eich, T ;
Erents, SK ;
Fundamenski, W ;
Huber, A ;
Jachmich, S ;
Kirnev, G ;
Lehnen, M ;
Lomas, PJ ;
Loarte, A ;
Matthews, GF ;
Rapp, J ;
Silva, C ;
Stamp, MF ;
Strachan, JD ;
Tsitrone, E .
JOURNAL OF NUCLEAR MATERIALS, 2005, 337 (1-3) :146-153
[20]   Outer target heat fluxes and power decay length scaling in L-mode plasmas at JET and AUG [J].
Scarabosio, A. ;
Eich, T. ;
Herrmann, A. ;
Sieglin, B. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S426-S430