pH-regulative synthesis of Na3(VPO4)2F3 nanoflowers and their improved Na cycling stability

被引:91
作者
Qi, Yuruo [1 ,2 ]
Mu, Linqin [3 ]
Zhao, Junmei [1 ]
Hu, Yong-Sheng [2 ,3 ]
Liu, Huizhou [1 ]
Dai, Sheng [4 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA
基金
北京市自然科学基金;
关键词
SODIUM-ION BATTERIES; CATHODE MATERIALS; VANADIUM FLUOROPHOSPHATE; LITHIUM-ION; NA3V2(PO4)(2)F-3 CATHODE; ENERGY-STORAGE; NANOCRYSTALS; PERFORMANCE; PHASE; NA3V2O2X(PO4)(2)F3-2X;
D O I
10.1039/c6ta01023g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na-ion batteries are becoming increasingly attractive as a low cost energy storage device. Sodium vanadium fluorophosphates have been studied extensively recently due to their high storage capacity and high discharge voltage. Shape and size often have a crucial influence over the properties. The controlling synthesis of nanoparticles with special microstructures is significant, which becomes a challenging issue and has drawn considerable attention. In this study, Na-3(VPO4)(2)F-3 nanoflowers have been synthesized via a pH-regulative low-temperature (120 degrees C) hydro-thermal route. In particular, it is a green route without any organic compounds involved. The hydro -thermal reaction time for the formation of Na-3(VPO4)(2)F-3 nanoflowers has also been investigated. A weak acid environment (pH = 2.60) with the possible presence of hydrogen fluoride molecules is necessary for the formation of the desired nanoflower microstructures. Compared to the nanoparticles obtained by Na2HPO4.12H(2)O, the as synthesized Na-3(VPO4)(2)F-3 nanoflowers showed an excellent Na-storage performance in terms of superior cycle stability, even without any further carbon coating or high-temperature treatment.
引用
收藏
页码:7178 / 7184
页数:7
相关论文
共 37 条
[1]   Hybrid-ion - A lithium-ion cell based on a sodium insertion material [J].
Barker, J ;
Gover, RKB ;
Burns, P ;
Bryan, AJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (04) :A190-A192
[2]   A sodium-ion cell based on the fluorophosphate compound NaVPO4F [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) :A1-A4
[3]   Modifying the Size and Shape of Monodisperse Bifunctional Alkaline-Earth Fluoride Nanocrystals through Lanthanide Doping [J].
Chen, Daqin ;
Yu, Yunlong ;
Huang, Feng ;
Huang, Ping ;
Yang, Anping ;
Wang, Yuansheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (29) :9976-9978
[4]   Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium-ion batteries [J].
Chihara, Kuniko ;
Kitajou, Ayuko ;
Gocheva, Irina D. ;
Okada, Shigeto ;
Yamaki, Jun-ichi .
JOURNAL OF POWER SOURCES, 2013, 227 :80-85
[5]   The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3 [J].
Gover, R. K. B. ;
Bryan, A. ;
Burns, P. ;
Barker, J. .
SOLID STATE IONICS, 2006, 177 (17-18) :1495-1500
[6]   An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage [J].
Hou, Zhiguo ;
Li, Xiaona ;
Liang, Jianwen ;
Zhu, Youngchun ;
Qian, Yitai .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (04) :1400-1404
[7]   Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries [J].
Jin, Hongyun ;
Dong, Jie ;
Uchaker, Evan ;
Zhang, Qifeng ;
Zhou, Xuezhe ;
Hou, Shuen ;
Li, Jiangyu ;
Cao, Guozhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (34) :17563-17568
[8]   Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Ma, Xiaohua ;
Ceder, Gerbrand ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :710-721
[9]   The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage [J].
Kundu, Dipan ;
Talaie, Elahe ;
Duffort, Victor ;
Nazar, Linda F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (11) :3431-3448
[10]  
Larcher D, 2015, NAT CHEM, V7, P19, DOI [10.1038/NCHEM.2085, 10.1038/nchem.2085]