Relativistic scattering with a spatially dependent effective mass in the Dirac equation

被引:26
作者
Alhaidari, A. D. [1 ]
Bahlouli, H.
Al-Hasan, A.
Abdelmonem, M. S.
机构
[1] Shura Council, Riyadh 11212, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Dept Phys, Dhahran 31261, Saudi Arabia
[3] Samba Financial Grp, Riyadh 11421, Saudi Arabia
来源
PHYSICAL REVIEW A | 2007年 / 75卷 / 06期
关键词
D O I
10.1103/PhysRevA.75.062711
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We formulate a relativistic algebraic method of scattering for systems with spatially dependent mass based on the J-matrix method. The reference Hamiltonian is the three-dimensional Dirac Hamiltonian but with a mass that is position-dependent with a constant asymptotic limit. Additionally, this effective mass distribution is locally represented in a finite dimensional function subspace. The spinor couples to spherically symmetric vector and pseudo scalar potentials that are short-range such that they are accurately represented by their matrix elements in the same finite dimensional subspace. We calculate the relativistic phase shift as a function of energy for a given configuration and study the effect of spatial variation of the mass on the energy resonance structure.
引用
收藏
页数:14
相关论文
共 34 条
[1]  
ABRAOWITZ M, 1972, HDB MATH FUNCTIONS F
[2]   Relativistic extension of the complex scaling method [J].
Alhaidari, A. D. .
PHYSICAL REVIEW A, 2007, 75 (04)
[3]   Evaluation of integrals involving orthogonal polynomials: Laguerre polynomial and Bessel function example [J].
Alhaidari, A. D. .
APPLIED MATHEMATICS LETTERS, 2007, 20 (01) :38-42
[4]   L2 series solutions of the Dirac equation for power-law potentials at rest mass energy [J].
Alhaidari, AD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (46) :11229-11241
[5]   Unified algebraic treatment of resonance [J].
Alhaidari, AD .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (12) :2657-2672
[6]   An extended class of L2-series solutions of the wave equation [J].
Alhaidari, AD .
ANNALS OF PHYSICS, 2005, 317 (01) :152-174
[7]   The relativistic J-matrix theory of scattering:: An analytic solution [J].
Alhaidari, AD .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (03) :1129-1135
[8]   Relativistic J-matrix theory of scattering -: art. no. 062708 [J].
Alhaidari, AD ;
Yamani, HA ;
Abdelmonem, MS .
PHYSICAL REVIEW A, 2001, 63 (06) :12
[9]  
[Anonymous], 1982, SCATTERING THEORY WA, DOI DOI 10.1007/978-3-642-88128-2
[10]   ALGEBRAIC-METHOD FOR THE QUANTUM-THEORY OF SCATTERING [J].
ARICKX, F ;
BROECKHOVE, J ;
VANLEUVEN, P ;
VASILEVSKY, V ;
FILIPPOV, G .
AMERICAN JOURNAL OF PHYSICS, 1994, 62 (04) :362-370