A tyrosyl-tRNA synthetase adapted to function in group I intron splicing by acquiring a new RNA binding surface

被引:30
作者
Paukstelis, PJ [1 ]
Coon, R [1 ]
Madabusi, L [1 ]
Nowakowski, J [1 ]
Monzingo, A [1 ]
Robertus, J [1 ]
Lambowitz, AM [1 ]
机构
[1] Univ Texas, Dept Chem & Biochem, Inst Mol & Cellular Biol, Sect Mol Genet & Microbiol,Sch Biol Sci, Austin, TX 78712 USA
关键词
D O I
10.1016/j.molcel.2004.12.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We determined a 1.95 Angstrom X-ray crystal structure of a C-terminally truncated Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) that functions in splicing group I introns. CYT-18's nucleotide binding fold and intermediate alpha-helical domains superimpose on those of bacterial TyrRSs, except for an N-terminal extension and two small insertions not found in nonsplicing bacterial enzymes. These additions surround the cyt-18-1 mutation site and are sites of suppressor mutations that restore splicing, but not synthetase activity. Highly constrained models based on directed hydroxyl radical cleavage assays show that the group I intron binds at a site formed in part by the three additions on the nucleotide binding fold surface opposite that which binds tRNA(Tyr). Our results show how essential proteins can progressively evolve new functions.
引用
收藏
页码:417 / 428
页数:12
相关论文
共 34 条
[1]   Crystal structure of a self-splicing group I intron with both exons [J].
Adams, PL ;
Stahley, MR ;
Kosek, AB ;
Wang, JM ;
Strobel, SA .
NATURE, 2004, 430 (6995) :45-50
[2]   A PROTEIN REQUIRED FOR SPLICING GROUP-I INTRONS IN NEUROSPORA MITOCHONDRIA IS MITOCHONDRIAL TYROSYL-TRANSFER RNA-SYNTHETASE OR A DERIVATIVE THEREOF [J].
AKINS, RA ;
LAMBOWITZ, AM .
CELL, 1987, 50 (03) :331-345
[3]   A MODEL OF SYNTHETASE TRANSFER-RNA INTERACTION AS DEDUCED BY PROTEIN ENGINEERING [J].
BEDOUELLE, H ;
WINTER, G .
NATURE, 1986, 320 (6060) :371-373
[4]   Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor [J].
Bolduc, JM ;
Spiegel, PC ;
Chatterjee, P ;
Brady, KL ;
Downing, ME ;
Caprara, MG ;
Waring, RB ;
Stoddard, BL .
GENES & DEVELOPMENT, 2003, 17 (23) :2875-2888
[5]   STRUCTURE OF TYROSYL TRANSFER-RNA SYNTHETASE REFINED AT 2.3-A RESOLUTION - INTERACTION OF THE ENZYME WITH THE TYROSYL ADENYLATE INTERMEDIATE [J].
BRICK, P ;
BHAT, TN ;
BLOW, DM .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 208 (01) :83-98
[6]   CRYSTAL-STRUCTURE OF A DELETION MUTANT OF A TYROSYL-TRANSFER RNA-SYNTHETASE COMPLEXED WITH TYROSINE [J].
BRICK, P ;
BLOW, DM .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 194 (02) :287-297
[7]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[8]   A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core [J].
Caprara, MG ;
Mohr, G ;
Lambowitz, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (03) :512-531
[9]   A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core [J].
Caprara, MG ;
Lehnert, V ;
Lambowitz, AM ;
Westhof, E .
CELL, 1996, 87 (06) :1135-1145
[10]   Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain.: Thermodynamic analysis and the role of metal ions [J].
Caprara, MG ;
Myers, CA ;
Lambowitz, AM .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 308 (02) :165-190