Zn0@ZnS Core-Shell Nanoparticles via Oxidation of Intermediate Zn0 Nanoparticles

被引:3
作者
Schoettle, Christian [1 ]
Feldmann, Claus [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anorgan Chem, Engesserstr 15, D-76131 Karlsruhe, Germany
来源
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE | 2016年 / 642卷 / 07期
关键词
Core shell; Zinc; Zinc sulfide; Mild oxidation; Nanostructures; NOBLE-METAL; ALUMINUM NANOPARTICLES; MORPHOLOGY;
D O I
10.1002/zaac.201600061
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Zn-0@ZnS core-shell nanoparticles were prepared via reduction of ZnCl2 to Zn-0 nanoparticles and subsequent partial oxidation with elemental sulfur. The intermediate, highly reactive Zn-0 nanoparticles were obtained by sodium naphthalenide ([NaNaph]) reduction of ZnCl2 in tetrahydrofuran (THF). After centrifugation, the Zn-0 nanoparticles were redispersed in a solution of sulfur in toluene and oxidized by subsequent heating to reflux. According to electron microscopy (HRTEM, HAADF-STEM), the Zn-0@ZnS core-shell nanoparticles exhibit a mean outer diameter of 12 +/- 4 nm, consisting of an inner Zn-0 core (8 nm in diameter) and a ZnS shell (2 nm in diameter). HRTEM and XRD confirm the crystallinity of both core and shell. The Zn-0@ZnS nanostructure shows synergistic properties of core and shell: the ZnS layer efficiently passivates the reactive Zn-0 metal core against oxidation, whereas the optical properties point to dominating metallic behavior of the Zn-0 metal core despite of the ZnS shell.
引用
收藏
页码:555 / 559
页数:5
相关论文
共 38 条
[1]   Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis [J].
An, Kwangjin ;
Somorjai, Gabor A. .
CHEMCATCHEM, 2012, 4 (10) :1512-1524
[2]  
[Anonymous], 2015, ANGEW CHEM
[3]  
Buck M. R., 2013, ANGEW CHEM, V125, P6270
[4]   Emerging Strategies for the Total Synthesis of Inorganic Nanostructures [J].
Buck, Matthew R. ;
Schaak, Raymond E. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (24) :6154-6178
[5]   Passivated iron as core-shell nanoparticles [J].
Carpenter, EE ;
Calvin, S ;
Stroud, RM ;
Harris, VG .
CHEMISTRY OF MATERIALS, 2003, 15 (17) :3245-3246
[6]  
Feldmann C, 2013, ANGEW CHEM, V125, P12671
[7]   Inhibition of oxide formation on aluminum nanoparticles by transition metal coating [J].
Foley, TJ ;
Johnson, CE ;
Higa, KT .
CHEMISTRY OF MATERIALS, 2005, 17 (16) :4086-4091
[8]  
Goesmann H., 2010, Angew. Chemie, V122, P1402, DOI DOI 10.1002/ANGE.200903053
[9]   Nanoparticulate Functional Materials [J].
Goesmann, Helmut ;
Feldmann, Claus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (08) :1362-1395
[10]   Ammonia-in-Oil-Microemulsions and Their Application [J].
Gyger, Fabian ;
Bockstaller, Pascal ;
Gerthsen, Dagmar ;
Feldmann, Claus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (47) :12443-12447