Hydrogen-Bond Network Determines the Early Photoisomerization Processes of Cph1 and AnPixJ Phytochromes

被引:6
作者
Liu, Xiang-Yang [1 ,2 ]
Zhang, Teng-Shuo [1 ]
Fang, Qiu [1 ]
Fang, Wei-Hai [1 ]
Gonzalez, Leticia [3 ]
Cui, Ganglong [1 ]
机构
[1] Beijing Normal Univ, Key Lab Theoret & Computat Photochem, Coll Chem, Minist Educ, Beijing 100875, Peoples R China
[2] Sichuan Normal Univ, Coll Chem & Mat Sci, Chengdu 610068, Peoples R China
[3] Univ Vienna, Fac Chem, Inst Theoret Chem, Wahringer Str 17, A-1090 Vienna, Austria
关键词
CASPT2; CASSCF; photochemistry; photoreceptors; QM; MM; CYANOBACTERIOCHROME ANPIXJ; CHROMOPHORE; PHOTOCONVERSION; DOMAIN; PHYCOCYANOBILIN; PHOTOCYCLES; ABSORPTION; DYNAMICS; TRACKING; SHOWS;
D O I
10.1002/anie.202104853
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phytochrome proteins are light receptors that play a pivotal role in regulating the life cycles of plants and microorganisms. Intriguingly, while cyanobacterial phytochrome Cph1 and cyanobacteriochrome AnPixJ use the same phycocyanobilin (PCB) chromophore to absorb light, their excited-state behavior is very different. We employ multiscale calculations to rationalize the different early photoisomerization mechanisms of PCB in Cph1 and AnPixJ. We found that their electronic S-1, T-1, and S-0 potential minima exhibit distinct geometric and electronic structures due to different hydrogen bond networks with the protein environment. These specific interactions influence the S-1 electronic structures along the photoisomerization paths, ultimately leading to internal conversion in Cph1 but intersystem crossing in AnPixJ. This explains why the excited-state relaxation in AnPixJ is much slower (ca. 100 ns) than in Cph1 (ca. 30 ps). Further, we predict that efficient internal conversion in AnPixJ can be achieved upon protonating the carboxylic group that interacts with PCB.
引用
收藏
页码:18688 / 18693
页数:6
相关论文
共 51 条
[1]   Deciphering Intrinsic Deactivation/Isomerization Routes in a Phytochrome Chromophore Model [J].
Altoe, Piero ;
Climent, Teresa ;
De Fusco, Giulia C. ;
Stenta, Marco ;
Bottoni, Andrea ;
Serrano-Andres, Luis ;
Merchan, Manuela ;
Orlandi, Giorgio ;
Garavelli, Marco .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (45) :15067-15073
[2]  
[Anonymous], 2019, ANGEW CHEM, V131, P1952
[3]   E to Z Photoisomerization of Phytochrome Cph1Δ Exceeds the Born-Oppenheimer Adiabatic Limit [J].
Bizimana, Laurie A. ;
Farfan, Camille A. ;
Brazard, Johanna ;
Turner, Daniel B. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (13) :3550-3556
[4]   A Photo-Labile Thioether Linkage to Phycoviolobilin Provides the Foundation for the Blue/Green Photocycles in DXCF-Cyanobacteriochromes [J].
Burgie, E. Sethe ;
Walker, Joseph M. ;
Phillips, George N., Jr. ;
Vierstra, Richard D. .
STRUCTURE, 2013, 21 (01) :88-97
[5]  
Chang X.-P., 2017, Angew. Chem, V129, P9469
[6]   Quantum Mechanics/Molecular Mechanics Study on the Photoreactions of Dark- and Light-Adapted States of a Blue-Light YtvA LOV Photoreceptor [J].
Chang, Xue-Ping ;
Gao, Yuan-Jun ;
Fang, Wei-Hai ;
Cui, Ganglong ;
Thiel, Walter .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (32) :9341-9345
[7]   Phytochrome signaling mechanisms and the control of plant development [J].
Chen, Meng ;
Chory, Joanne .
TRENDS IN CELL BIOLOGY, 2011, 21 (11) :664-671
[8]   SPIN-ORBIT COUPLING AND RADIATIONLESS PROCESSES IN NITROGEN HETEROCYCLICS [J].
ELSAYED, MA .
JOURNAL OF CHEMICAL PHYSICS, 1963, 38 (12) :2834-&
[9]   The structure of a complete phytochrome sensory module in the Pr ground state [J].
Essen, Lars-Oliver ;
Mailliet, Jo ;
Hughes, Jon .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (38) :14709-14714
[10]   Computational Identification of Pyrrole Ring C as the Preferred Donor for Excited-State Proton Transfer in Bacteriophytochromes [J].
Falklof, Olle ;
Durbeej, Bo .
CHEMPHOTOCHEM, 2018, 2 (06) :453-457