18F-FDG PET database of longitudinally confirmed healthy elderly individuals improves detection of mild cognitive impairment and Alzheimer's disease

被引:52
|
作者
Mosconi, Lisa
Tsui, Wai Hon
Pupi, Alberto
De Santi, Susan
Drzezga, Alexander
Minoshima, Satoshi
de Leon, Mony J.
机构
[1] NYU, Sch Med, Dept Psychiat, Ctr Brain Hlth Silberstein Inst, New York, NY 10016 USA
[2] Univ Florence, Florence, Italy
[3] Univ Munich, Munich, Germany
[4] Univ Washington, Seattle, WA 98195 USA
关键词
neurology; PET; Alzheimer's disease; normative reference database; early diagnosis;
D O I
10.2967/jnumed.107.040675
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The normative reference sample is crucial for the diagnosis of Alzheimer's disease (AD) with automated F-18-FDG PET analysis. We tested whether an F-18-FDG PET database of longitudinally confirmed healthy elderly individuals ("normals," or NLs) would improve diagnosis of AD and mild cognitive impairment (MCI). Methods: Two F-18-FDG PET databases of 55 NLs with 4-y clinical follow-up examinations were created: one of NLs who remained NIL, and the other including a fraction of NLs who declined to MCI at follow-up. Each F-18-FDG PET scan of 19 NLs, 37 MCI patients, and 33 AD patients was z scored using automated voxel-based comparison to both databases and examined for AD-related abnormalities. Results: Our database of longitudinally confirmed NLs yielded 1.4- to 2-fold higher z scores than did the mixed database in detecting (18)F(-)FDG PET abnormalities in both the MCI and the AD groups. F-18-FDG PET diagnosis using the longitudinal NL database identified 100% NLs, 100% MCI patients, and 100% AD patients which was significantly more accurate for MCI patients than kith the mixed database (100% NLs, 68% MCI patients, and 94% AD patients identified). Conclusion: Our longitudinally confirmed NL database constitutes reliable F-18-FDG PET normative values for MCI and AD.
引用
收藏
页码:1129 / 1134
页数:6
相关论文
共 50 条
  • [21] Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease
    Ng, Steven
    Villemagne, Victor L.
    Berlangieri, Sam
    Lee, Sze-Ting
    Cherk, Martin
    Gong, Sylvia J.
    Ackermann, Uwe
    Saunder, Tim
    Tochon-Danguy, Henri
    Jones, Gareth
    Smith, Clare
    O'Keefe, Graeme
    Masters, Colin L.
    Rowe, Christopher C.
    JOURNAL OF NUCLEAR MEDICINE, 2007, 48 (04) : 547 - 552
  • [22] Alzheimer's Disease FDG PET Imaging Pattern in an Amyloid-Negative Mild Cognitive Impairment Subject
    Tiepolt, Solveig
    Patt, Marianne
    Hoffmann, Karl-Titus
    Schroeter, Matthias L.
    Sabri, Osama
    Barthel, Henryk
    JOURNAL OF ALZHEIMERS DISEASE, 2015, 47 (03) : 539 - 543
  • [23] Mild Cognitive Impairment with a High Risk of Progression to Alzheimer's Disease Dementia (MCI-HR-AD): Effect of Souvenaid® Treatment on Cognition and 18F-FDG PET Scans
    Manzano Palomo, Maria Sagrario
    Anaya Caravaca, Belen
    Balsa Breton, Maria Angeles
    Muniz Castrillo, Sergio
    de la Morena Vicente, Asuncion
    Castro Arce, Eduardo
    Alves Perez, Maria Teresa
    JOURNAL OF ALZHEIMERS DISEASE REPORTS, 2019, 3 (01) : 95 - 102
  • [24] A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET
    Kobra Etminani
    Amira Soliman
    Anette Davidsson
    Jose R. Chang
    Begoña Martínez-Sanchis
    Stefan Byttner
    Valle Camacho
    Matteo Bauckneht
    Roxana Stegeran
    Marcus Ressner
    Marc Agudelo-Cifuentes
    Andrea Chincarini
    Matthias Brendel
    Axel Rominger
    Rose Bruffaerts
    Rik Vandenberghe
    Milica G. Kramberger
    Maja Trost
    Nicolas Nicastro
    Giovanni B. Frisoni
    Afina W. Lemstra
    Bart N. M. van Berckel
    Andrea Pilotto
    Alessandro Padovani
    Silvia Morbelli
    Dag Aarsland
    Flavio Nobili
    Valentina Garibotto
    Miguel Ochoa-Figueroa
    European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 : 563 - 584
  • [25] 18F-FDG-PET Radiomics Based on White Matter Predicts The Progression of Mild Cognitive Impairment to Alzheimer Disease: A Machine Learning Study
    Peng, Jiaxuan
    Wang, Wei
    Song, Qiaowei
    Hou, Jie
    Jin, Hui
    Qin, Xue
    Yuan, Zhongyu
    Wei, Yuguo
    Shu, Zhenyu
    ACADEMIC RADIOLOGY, 2023, 30 (09) : 1874 - 1884
  • [26] Predicting Alzheimer Disease From Mild Cognitive Impairment With a Deep Belief Network Based on 18F-FDG-PET Images
    Shen, Ting
    Jiang, Jiehui
    Lu, Jiaying
    Wang, Min
    Zuo, Chuantao
    Yu, Zhihua
    Yan, Zhuangzhi
    MOLECULAR IMAGING, 2019, 18
  • [27] Comparison of gait and cognitive function among the elderly with Alzheimer’s Disease, Mild Cognitive Impairment and Healthy
    Jin-Seung Choi
    Ho-Sang Oh
    Dong-Won Kang
    Kyung-Ryul Mun
    Mi-Hyun Choi
    Su-Jeong Lee
    Jae-Woong Yang
    Soon-Cheol Chung
    Suk-Woo Mun
    Gye-Rae Tack
    International Journal of Precision Engineering and Manufacturing, 2011, 12 : 169 - 173
  • [28] A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET
    Etminani, Kobra
    Soliman, Amira
    Davidsson, Anette
    Chang, Jose R.
    Martinez-Sanchis, Begona
    Byttner, Stefan
    Camacho, Valle
    Bauckneht, Matteo
    Stegeran, Roxana
    Ressner, Marcus
    Agudelo-Cifuentes, Marc
    Chincarini, Andrea
    Brendel, Matthias
    Rominger, Axel
    Bruffaerts, Rose
    Vandenberghe, Rik
    Kramberger, Milica G.
    Trost, Maja
    Nicastro, Nicolas
    Frisoni, Giovanni B.
    Lemstra, Afina W.
    van Berckel, Bart N. M.
    Pilotto, Andrea
    Padovani, Alessandro
    Morbelli, Silvia
    Aarsland, Dag
    Nobili, Flavio
    Garibotto, Valentina
    Ochoa-Figueroa, Miguel
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (02) : 563 - 584
  • [29] Contrastive Learning for Prediction of Alzheimer's Disease Using Brain 18F-FDG PET
    Chen, Yonglin
    Wang, Huabin
    Zhang, Gong
    Liu, Xiao
    Huang, Wei
    Han, Xianjun
    Li, Xuejun
    Martin, Melanie
    Tao, Liang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (04) : 1735 - 1746
  • [30] Gender differences in brain reserveAn 18F-FDG PET study in Alzheimer's disease
    R. Perneczky
    A. Drzezga
    J. Diehl-Schmid
    Y. Li
    A. Kurz
    Journal of Neurology, 2007, 254 : 1395 - 1400