Neural stem cells and strategies for the regeneration of the central nervous system

被引:49
作者
Okano, Hideyuki [1 ]
机构
[1] Keio Univ, Sch Med, Dept Physiol, Shinjuku Ku, Tokyo 1608582, Japan
来源
PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES | 2010年 / 86卷 / 04期
基金
日本科学技术振兴机构;
关键词
neural stem cells; neurosphere; COUP-TF; spinal cord injury; embryonic stem cells; induced pluripotent stem cells; SPINAL-CORD-INJURY; PROGENITOR CELLS; FETAL-BRAIN; IN-VIVO; STEM/PROGENITOR CELLS; TRANSCRIPTION FACTORS; FUNCTIONAL RECOVERY; PARKINSONS-DISEASE; SELF-RENEWAL; TRANSPLANTATION;
D O I
10.2183/pjab.86.438
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The adult mammalian central nervous system (CNS), especially that of adult humans, is a representative example of organs that do not regenerate. However, increasing interest has focused on the development of innovative therapeutic methods that aim to regenerate damaged CNS tissue by taking advantage of recent advances in stem cell and neuroscience research. In fact, the recapitulation of normal neural development has become a vital strategy for CNS regeneration. Normal CNS development is initiated by the induction of stem cells in the CNS, i.e., neural stem cells (NSCs). Thus, the introduction or mobilization of NSCs could be expected to lead to CNS regeneration by recapitulating normal CNS development, in terms of the activation of the endogenous regenerative capacity and cell transplantation therapy. Here, the recent progress in basic stem cell biology, including the author's own studies, on the prospective identification of NSCs, the elucidation of the mechanisms of ontogenic changes in the differentiation potential of NSCs, the induction of neural fate and NSCs from pluripotent stem cells, and their therapeutic applications are summarized. These lines of research will, hopefully, contribute to a basic understanding of the nature of NSCs, which should in turn lead to feasible strategies for the development of ideal "stem cell therapies" for the treatment of damaged brain and spinal cord tissue.
引用
收藏
页码:438 / 450
页数:13
相关论文
共 72 条
[1]   A unified hypothesis on the lineage of neural stem cells [J].
Alvarez-Buylla, A ;
García-Verdugo, JM ;
Tramontin, AD .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (04) :287-293
[2]   Donor-Derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient [J].
Amariglio, Ninette ;
Hirshberg, Abraham ;
Scheithauer, Bernd W. ;
Cohen, Yoram ;
Loewenthal, Ron ;
Trakhtenbrot, Luba ;
Paz, Nurit ;
Koren-Michowitz, Maya ;
Waldman, Dalia ;
Leider-Trejo, Leonor ;
Toren, Amos ;
Constantini, Shlomi ;
Rechavi, Gideon .
PLOS MEDICINE, 2009, 6 (02) :221-231
[3]   Stem cells for spinal cord repair [J].
Barnabe-Heider, Fanie ;
Frisen, Jonas .
CELL STEM CELL, 2008, 3 (01) :16-24
[4]   Forever young: Death-defying neuroblasts [J].
Chell, James M. ;
Brand, Andrea H. .
CELL, 2008, 133 (05) :769-771
[5]   Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice [J].
Cummings, BJ ;
Uchida, N ;
Tamaki, SJ ;
Salazar, DL ;
Hooshmand, M ;
Summers, R ;
Gage, FH ;
Anderson, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (39) :14069-14074
[6]   Neurogenesis in the adult human hippocampus [J].
Eriksson, PS ;
Perfilieva, E ;
Björk-Eriksson, T ;
Alborn, AM ;
Nordborg, C ;
Peterson, DA ;
Gage, FH .
NATURE MEDICINE, 1998, 4 (11) :1313-1317
[8]   The human Musashi homolog 1 (MSI1) gene encoding the homologue of Musashi/Nrp-1, a neural RNA-binding protein putatively expressed in CNS stem cells and neural progenitor cells [J].
Good, P ;
Yoda, A ;
Sakakibara, S ;
Yamamoto, A ;
Imai, T ;
Sawa, H ;
Ikeuchi, T ;
Tsuji, S ;
Satoh, H ;
Okano, H .
GENOMICS, 1998, 52 (03) :382-384
[9]  
HOCKFIELD S, 1985, J NEUROSCI, V5, P3310
[10]   Transplantation of human neural stem cells for spinal cord injury in primates [J].
Iwanami, A ;
Kaneko, S ;
Nakamura, M ;
Kanemura, Y ;
Mori, H ;
Kobayashi, S ;
Yamasaki, M ;
Momoshima, S ;
Ishii, H ;
Ando, K ;
Tanioka, Y ;
Tamaoki, N ;
Nomura, T ;
Toyama, Y ;
Okano, H .
JOURNAL OF NEUROSCIENCE RESEARCH, 2005, 80 (02) :182-190