Does the epigenetic clock GrimAge predict mortality independent of genetic influences: an 18 year follow-up study in older female twin pairs

被引:29
作者
Tiina, Fohr [1 ]
Katja, Waller [2 ]
Anne, Viljanen [1 ]
Riikka, Sanchez [1 ]
Miina, Ollikainen [3 ,4 ]
Taina, Rantanen [1 ]
Jaakko, Kaprio [4 ]
Sillanpaa, Elina [1 ,4 ]
机构
[1] Univ Jyvaskyla, Fac Sport & Hlth Sci, Gerontol Res Ctr GEREC, POB 35 VIV, Jyvaskyla 40014, Finland
[2] Univ Jyvaskyla, Fac Sport & Hlth Sci, Jyvaskyla, Finland
[3] Univ Helsinki, Dept Publ Hlth, Helsinki, Finland
[4] Univ Helsinki, Inst Mol Med Finland FIMM, Helsinki, Finland
基金
芬兰科学院;
关键词
Biological age; DNA methylation; Epigenetic clock; Mortality; Twins; DNA METHYLATION AGE; ALL-CAUSE MORTALITY; PHYSICAL-ACTIVITY; HUMAN LONGEVITY; LEISURE-TIME; SMOKING; HERITABILITY; METAANALYSIS; DISEASE; RISK;
D O I
10.1186/s13148-021-01112-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Epigenetic clocks are based on DNA methylation (DNAm). It has been suggested that these clocks are useable markers of biological aging and premature mortality. Because genetic factors explain variations in both epigenetic aging and mortality, this association could also be explained by shared genetic factors. We investigated the influence of genetic and lifestyle factors (smoking, alcohol consumption, physical activity, chronic diseases, body mass index) and education on the association of accelerated epigenetic aging with mortality using a longitudinal twin design. Utilizing a publicly available online tool, we calculated the epigenetic age using two epigenetic clocks, Horvath DNAmAge and DNAm GrimAge, in 413 Finnish twin sisters, aged 63-76 years, at the beginning of the 18-year mortality follow-up. Epigenetic age acceleration was calculated as the residuals from a linear regression model of epigenetic age estimated on chronological age (AA(Horvath), AA(GrimAge), respectively). Cox proportional hazard models were conducted for individuals and twin pairs. Results The results of the individual-based analyses showed an increased mortality hazard ratio (HR) of 1.31 (CI95: 1.13-1.53) per one standard deviation (SD) increase in AA(GrimAge). The results indicated no significant associations of AA(Horvath) with mortality. Pairwise mortality analyses showed an HR of 1.50 (CI95: 1.02-2.20) per 1 SD increase in AA(GrimAge). However, after adjusting for smoking, the HR attenuated substantially and was statistically non-significant (1.29; CI95: 0.84-1.99). Similarly, in multivariable adjusted models the HR (1.42-1.49) was non-significant. In AA(Horvath), the non-significant HRs were lower among monozygotic pairs in comparison to dizygotic pairs, while in AA(GrimAge) there were no systematic differences by zygosity. Further, the pairwise analysis in quartiles showed that the increased within pair difference in AA(GrimAge) was associated with a higher all-cause mortality risk. Conclusions In conclusion, the findings suggest that DNAm GrimAge is a strong predictor of mortality independent of genetic influences. Smoking, which is known to alter DNAm levels and is built into the DNAm GrimAge algorithm, attenuated the association between epigenetic aging and mortality risk.
引用
收藏
页数:9
相关论文
共 36 条
[1]  
[Anonymous], 2014, The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General
[2]   DNA methylation studies using twins: what are they telling us? [J].
Bell, Jordana T. ;
Spector, Tim D. .
GENOME BIOLOGY, 2012, 13 (10) :172
[3]   DNA methylation-based measures of biological age: meta-analysis predicting time to death [J].
Chen, Brian H. ;
Marioni, Riccardo E. ;
Colicino, Elena ;
Peters, Marjolein J. ;
Ward-Caviness, Cavin K. ;
Tsai, Pei-Chien ;
Roetker, Nicholas S. ;
Just, Allan C. ;
Demerath, Ellen W. ;
Guan, Weihua ;
Bressler, Jan ;
Fornage, Myriam ;
Studenski, Stephanie ;
Vandiver, Amy R. ;
Moore, Ann Zenobia ;
Tanaka, Toshiko ;
Kiel, Douglas P. ;
Liang, Liming ;
Vokonas, Pantel ;
Schwartz, Joel ;
Lunetta, Kathryn L. ;
Murabito, Joanne M. ;
Bandinelli, Stefania ;
Hernandez, Dena G. ;
Melzer, David ;
Nalls, Michael ;
Pilling, Luke C. ;
Price, Timothy R. ;
Singleton, Andrew B. ;
Gieger, Christian ;
Holle, Rolf ;
Kretschmer, Anja ;
Kronenberg, Florian ;
Kunze, Sonja ;
Linseisen, Jakob ;
Meisinger, Christine ;
Rathmann, Wolfgang ;
Waldenberger, Melanie ;
Visscher, Peter M. ;
Shah, Sonia ;
Wray, Naomi R. ;
McRae, Allan F. ;
Franco, Oscar H. ;
Hofman, Albert ;
Uitterlinden, Andre G. ;
Absher, Devin ;
Assimes, Themistocles ;
Levine, Morgan E. ;
Lu, Ake T. ;
Tsao, Philip S. .
AGING-US, 2016, 8 (09) :1844-1865
[4]   DNA methylation age is associated with mortality in a longitudinal Danish twin study [J].
Christiansen, Lene ;
Lenart, Adam ;
Tan, Qihua ;
Vaupel, James W. ;
Aviv, Abraham ;
McGue, Matt ;
Christensen, Kaare .
AGING CELL, 2016, 15 (01) :149-154
[5]   Estimates of global mortality attributable to smoking in 2000 [J].
Ezzati, M ;
Lopez, AD .
LANCET, 2003, 362 (9387) :847-852
[6]   Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis [J].
Fiorito, Giovanni ;
McCrory, Cathal ;
Robinson, Oliver ;
Carmeli, Cristian ;
Rosales, Carolina Ochoa ;
Zhang, Yan ;
Colicino, Elena ;
Dugue, Pierre-Antoine ;
Artaud, Fanny ;
Mckay, Gareth J. ;
Jeong, Ayoung ;
Mishra, Pashupati P. ;
Nost, Therese H. ;
Krogh, Vittorio ;
Panico, Salvatore ;
Sacerdote, Carlotta ;
Tumino, Rosario ;
Palli, Domenico ;
Matullo, Giuseppe ;
Guarrera, Simonetta ;
Gandini, Martina ;
Bochud, Murielle ;
Dermitzakis, Emmanouil ;
Muka, Taulant ;
Schwartz, Joel ;
Vokonas, Pantel S. ;
Just, Allan ;
Hodge, Allison M. ;
Giles, Graham G. ;
Southey, Melissa C. ;
Hurme, Mikko A. ;
Young, Ian ;
McKnight, Amy Jayne ;
Kunze, Sonja ;
Waldenberger, Melanie ;
Peters, Annette ;
Schwettmann, Lars ;
Lund, Eiliv ;
Baccarelli, Andrea ;
Milne, Roger L. ;
Kenny, Rose A. ;
Elbaz, Alexis ;
Brenner, Hermann ;
Kee, Frank ;
Voortman, Trudy ;
Probst-Hensch, Nicole ;
Lehtimaki, Terho ;
Elliot, Paul ;
Stringhini, Silvia ;
Vineis, Paolo .
AGING-US, 2019, 11 (07) :2045-2070
[7]   Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi [J].
Fortin, Jean-Philippe ;
Triche, Timothy J., Jr. ;
Hansen, Kasper D. .
BIOINFORMATICS, 2017, 33 (04) :558-560
[8]   The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis [J].
Fransquet, Peter D. ;
Wrigglesworth, Jo ;
Woods, Robyn L. ;
Ernst, Michael E. ;
Ryan, Joanne .
CLINICAL EPIGENETICS, 2019, 11 (1)
[9]   DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies [J].
Gao, Xu ;
Jia, Min ;
Zhang, Yan ;
Breitling, Lutz Philipp ;
Brenner, Hermann .
CLINICAL EPIGENETICS, 2015, 7
[10]  
GRIMBY G, 1986, ACTA MED SCAND, P233